Rhianna Brown, Lois Holloway, Annie Lau, Karen Lim, Pereshin Moodaley, Peter Metcalfe, Viet Do, Dean Cutajar, Amy Walker
{"title":"Potential anatomical triggers for plan adaptation of cervical cancer external beam radiotherapy.","authors":"Rhianna Brown, Lois Holloway, Annie Lau, Karen Lim, Pereshin Moodaley, Peter Metcalfe, Viet Do, Dean Cutajar, Amy Walker","doi":"10.1007/s13246-024-01473-2","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to identify potential anatomical variation triggers using magnetic resonance imaging for plan adaption of cervical cancer patients to ensure dose requirements were met over an external beam radiotherapy course. Magnetic resonance images (MRIs) acquired before and during treatment were rigidly registered to a pre-treatment computerised tomography (CT) image for 11 retrospective cervix cancer datasets. Target volumes (TVs) and organs at risk (OARs) were delineated on both MRIs and propagated onto the CT. Treatment plans were generated based on the pre-treatment contours and applied to the mid-treatment contours. Anatomical and dosimetric changes between each timepoint were assessed. The anatomical changes included the change in centroid position and volume size. Dosimetric changes included the V30Gy and V40Gy for the OARs, and V95%, V100%, D95% and D98% for the TVs. Correlation with dosimetric and anatomical changes were assessed to determine potential replan triggers. Changes in the bowel volume and position in the superior-inferior direction, and the high-risk CTV anterior posterior position were highly correlated with a change in dose to the bowel and target, respectively. Hence changes in bowel and high-risk CTV could be used as a potential replan triggers.</p>","PeriodicalId":48490,"journal":{"name":"Physical and Engineering Sciences in Medicine","volume":" ","pages":"1593-1602"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11666673/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical and Engineering Sciences in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13246-024-01473-2","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/8 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study aimed to identify potential anatomical variation triggers using magnetic resonance imaging for plan adaption of cervical cancer patients to ensure dose requirements were met over an external beam radiotherapy course. Magnetic resonance images (MRIs) acquired before and during treatment were rigidly registered to a pre-treatment computerised tomography (CT) image for 11 retrospective cervix cancer datasets. Target volumes (TVs) and organs at risk (OARs) were delineated on both MRIs and propagated onto the CT. Treatment plans were generated based on the pre-treatment contours and applied to the mid-treatment contours. Anatomical and dosimetric changes between each timepoint were assessed. The anatomical changes included the change in centroid position and volume size. Dosimetric changes included the V30Gy and V40Gy for the OARs, and V95%, V100%, D95% and D98% for the TVs. Correlation with dosimetric and anatomical changes were assessed to determine potential replan triggers. Changes in the bowel volume and position in the superior-inferior direction, and the high-risk CTV anterior posterior position were highly correlated with a change in dose to the bowel and target, respectively. Hence changes in bowel and high-risk CTV could be used as a potential replan triggers.