Amir Entezam, Andrew Fielding, Gishan Ratnayake, Davide Fontanarosa
{"title":"In-silico evaluation of the effect of set-up errors on dose delivery during mouse irradiations with a Cs-137 cell irradiator-based collimator system.","authors":"Amir Entezam, Andrew Fielding, Gishan Ratnayake, Davide Fontanarosa","doi":"10.1007/s13246-024-01486-x","DOIUrl":null,"url":null,"abstract":"<p><p>Set-up errors are a problem for pre-clinical irradiators that lack imaging capabilities. The aim of this study was to investigate the impact of the potential set-up errors on the dose distribution for a mouse with a xenographic tumour irradiated with a standard Cs-137 cell irradiator equipped with an in-house lead collimator with 10 mm diameter apertures. The EGSnrc Monte-Carlo (MC) code was used to simulate the potential errors caused by displacements of the mouse in the irradiation setup. The impact of the simulated set-up displacements on the dose delivered to the xenographic tumour and surrounding organs was assessed. MC dose calculations were performed in a Computed Tomography (CT) derived model of the mouse for the reference position of the tumour in the irradiation setup. The errors were added into the CT data and then the mouse doses for the corresponding shifts were recalculated and dose volume histograms (DVHs) were generated. The investigation was performed for 1 cm and 0.5 cm diameter tumours. The DVH resulting from introducing the maximum setup errors for 1 cm diameter tumours showed up to 35% reduced dose to a significant fraction of the tumour volume. The setup errors demonstrated an insignificant effect on doses for 0.5 cm diameter tumour irradiations. Setup errors were observed to have negligible impact on out of field doses to organs at risk. The dosimetric results presented herein verify the robustness of our collimator system for irradiations of xenograft tumours up to 0.5 cm diameter in the presence of the maximum setup errors.</p>","PeriodicalId":48490,"journal":{"name":"Physical and Engineering Sciences in Medicine","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical and Engineering Sciences in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13246-024-01486-x","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Set-up errors are a problem for pre-clinical irradiators that lack imaging capabilities. The aim of this study was to investigate the impact of the potential set-up errors on the dose distribution for a mouse with a xenographic tumour irradiated with a standard Cs-137 cell irradiator equipped with an in-house lead collimator with 10 mm diameter apertures. The EGSnrc Monte-Carlo (MC) code was used to simulate the potential errors caused by displacements of the mouse in the irradiation setup. The impact of the simulated set-up displacements on the dose delivered to the xenographic tumour and surrounding organs was assessed. MC dose calculations were performed in a Computed Tomography (CT) derived model of the mouse for the reference position of the tumour in the irradiation setup. The errors were added into the CT data and then the mouse doses for the corresponding shifts were recalculated and dose volume histograms (DVHs) were generated. The investigation was performed for 1 cm and 0.5 cm diameter tumours. The DVH resulting from introducing the maximum setup errors for 1 cm diameter tumours showed up to 35% reduced dose to a significant fraction of the tumour volume. The setup errors demonstrated an insignificant effect on doses for 0.5 cm diameter tumour irradiations. Setup errors were observed to have negligible impact on out of field doses to organs at risk. The dosimetric results presented herein verify the robustness of our collimator system for irradiations of xenograft tumours up to 0.5 cm diameter in the presence of the maximum setup errors.