Temperature-dependent trophic associations modulate soil bacterial communities along latitudinal gradients.

IF 10.8 1区 环境科学与生态学 Q1 ECOLOGY ISME Journal Pub Date : 2024-01-08 DOI:10.1093/ismejo/wrae145
Xing Huang, Jianjun Wang, Kenneth Dumack, Karthik Anantharaman, Bin Ma, Yan He, Weiping Liu, Hongjie Di, Yong Li, Jianming Xu
{"title":"Temperature-dependent trophic associations modulate soil bacterial communities along latitudinal gradients.","authors":"Xing Huang, Jianjun Wang, Kenneth Dumack, Karthik Anantharaman, Bin Ma, Yan He, Weiping Liu, Hongjie Di, Yong Li, Jianming Xu","doi":"10.1093/ismejo/wrae145","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding the environmental and biological mechanisms shaping latitudinal patterns in microbial diversity is challenging in the field of ecology. Although multiple hypotheses have been proposed to explain these patterns, a consensus has rarely been reached. Here, we conducted a large-scale field survey and microcosm experiments to investigate how environmental heterogeneity and putative trophic interactions (exerted by protist-bacteria associations and T4-like virus-bacteria associations) affect soil bacterial communities along a latitudinal gradient. We found that the microbial latitudinal diversity was kingdom dependent, showing decreasing, clumped, and increasing trends in bacteria, protists, and T4-like viruses, respectively. Climatic and edaphic drivers played predominant roles in structuring the bacterial communities; the intensity of the climatic effect increased sharply from 30°N to 32°N, whereas the intensity of the edaphic effect remained stable. Biotic associations were also essential in shaping the bacterial communities, with protist-bacteria associations showing a quadratic distribution, whereas virus-bacteria associations were significant only at high latitudes. The microcosm experiments further revealed that the temperature component, which is affiliated with climate conditions, is the primary regulator of trophic associations along the latitudinal gradient. Overall, our study highlights a previously underestimated mechanism of how the putative biotic interactions influence bacterial communities and their response to environmental gradients.</p>","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":null,"pages":null},"PeriodicalIF":10.8000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11334336/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISME Journal","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/ismejo/wrae145","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the environmental and biological mechanisms shaping latitudinal patterns in microbial diversity is challenging in the field of ecology. Although multiple hypotheses have been proposed to explain these patterns, a consensus has rarely been reached. Here, we conducted a large-scale field survey and microcosm experiments to investigate how environmental heterogeneity and putative trophic interactions (exerted by protist-bacteria associations and T4-like virus-bacteria associations) affect soil bacterial communities along a latitudinal gradient. We found that the microbial latitudinal diversity was kingdom dependent, showing decreasing, clumped, and increasing trends in bacteria, protists, and T4-like viruses, respectively. Climatic and edaphic drivers played predominant roles in structuring the bacterial communities; the intensity of the climatic effect increased sharply from 30°N to 32°N, whereas the intensity of the edaphic effect remained stable. Biotic associations were also essential in shaping the bacterial communities, with protist-bacteria associations showing a quadratic distribution, whereas virus-bacteria associations were significant only at high latitudes. The microcosm experiments further revealed that the temperature component, which is affiliated with climate conditions, is the primary regulator of trophic associations along the latitudinal gradient. Overall, our study highlights a previously underestimated mechanism of how the putative biotic interactions influence bacterial communities and their response to environmental gradients.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
与温度相关的营养关联沿着纬度梯度调节土壤细菌群落。
在生态学领域,了解形成微生物多样性纬度模式的环境和生物机制具有挑战性。尽管已经提出了多种假说来解释这些模式,但很少达成共识。在这里,我们进行了大规模的实地调查和微观世界实验,以研究环境异质性和假定的营养相互作用(由原生生物-细菌关联和 T4 类病毒-细菌关联产生)如何影响纬度梯度上的土壤细菌群落。我们发现,微生物的纬度多样性与王国有关,细菌、原生生物和类 T4 病毒分别呈现出减少、聚集和增加的趋势。气候和环境因素在细菌群落结构中起着主要作用,从北纬 30 度到 32 度,气候效应的强度急剧增加,而环境效应的强度则保持稳定。生物关联对细菌群落的形成也至关重要,原生生物与细菌的关联呈二次分布,而病毒与细菌的关联仅在高纬度地区显著。微宇宙实验进一步揭示,与气候条件相关的温度成分是纬度梯度上营养关联的主要调节因素。总之,我们的研究强调了一种以前被低估的机制,即假定的生物相互作用如何影响细菌群落及其对环境梯度的响应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ISME Journal
ISME Journal 环境科学-生态学
CiteScore
22.10
自引率
2.70%
发文量
171
审稿时长
2.6 months
期刊介绍: The ISME Journal covers the diverse and integrated areas of microbial ecology. We encourage contributions that represent major advances for the study of microbial ecosystems, communities, and interactions of microorganisms in the environment. Articles in The ISME Journal describe pioneering discoveries of wide appeal that enhance our understanding of functional and mechanistic relationships among microorganisms, their communities, and their habitats.
期刊最新文献
Impact of timing on the invasion of synthetic bacterial communities. Biotics and bacterial function: impact on gut and host health. Sheaths are diverse and abundant cell surface layers in archaea. Bacterial population-level trade-offs between drought tolerance and resource acquisition traits impact decomposition. Probiotic model for studying rhizosphere interactions of root exudates and the functional microbiome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1