Amanda M Zdimal, Giacomo Di Dio, Wanxiang Liu, Tanya Aftab, Taryn Collins, Remy Colin, Abhishek Shrivastava
{"title":"Swarming bacteria exhibit developmental phase transitions to establish scattered colonies in new regions.","authors":"Amanda M Zdimal, Giacomo Di Dio, Wanxiang Liu, Tanya Aftab, Taryn Collins, Remy Colin, Abhishek Shrivastava","doi":"10.1093/ismejo/wrae263","DOIUrl":null,"url":null,"abstract":"<p><p>The collective surface motility and swarming behavior of microbes play a crucial role in the formation of polymicrobial communities, shaping ecosystems as diverse as animal and human microbiota, plant rhizospheres, and various aquatic environments. In the human oral microbiota, T9SS-driven gliding bacteria transport non-motile microbes and bacteriophages as cargo, thereby influencing the spatial organization and structural complexity of these polymicrobial communities. However, the physical rules governing the dispersal of T9SS-driven bacterial swarms are barely understood. Here, we collected time-lapse images, under anaerobic conditions, of developing swarms of a T9SS-driven microbe common to the human oral microbiota. Tracking of swarms revealed that small peripheral flares emerging from a colony develop structures that resemble fireworks displaying a chrysanthemum effect and flower-like patterns that convert to wave-like patterns and which further evolve into scattered microcolonies. Particle-image velocimetry showed density-dependent phase transitions and initial vorticity within these emerging patterns. Numerical simulations demonstrate that these patterns arise due to changes in swarm speed and alignment strength. Our data reveal a strategy used by an anaerobic swarming bacterium to control swarm behavior, resulting in scattered microcolonies distant from the mother colony, thus reducing competition for resources among colony members. This might ensure species survival even if conditions change drastically in one location of the human oral cavity.</p>","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":" ","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISME Journal","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/ismejo/wrae263","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The collective surface motility and swarming behavior of microbes play a crucial role in the formation of polymicrobial communities, shaping ecosystems as diverse as animal and human microbiota, plant rhizospheres, and various aquatic environments. In the human oral microbiota, T9SS-driven gliding bacteria transport non-motile microbes and bacteriophages as cargo, thereby influencing the spatial organization and structural complexity of these polymicrobial communities. However, the physical rules governing the dispersal of T9SS-driven bacterial swarms are barely understood. Here, we collected time-lapse images, under anaerobic conditions, of developing swarms of a T9SS-driven microbe common to the human oral microbiota. Tracking of swarms revealed that small peripheral flares emerging from a colony develop structures that resemble fireworks displaying a chrysanthemum effect and flower-like patterns that convert to wave-like patterns and which further evolve into scattered microcolonies. Particle-image velocimetry showed density-dependent phase transitions and initial vorticity within these emerging patterns. Numerical simulations demonstrate that these patterns arise due to changes in swarm speed and alignment strength. Our data reveal a strategy used by an anaerobic swarming bacterium to control swarm behavior, resulting in scattered microcolonies distant from the mother colony, thus reducing competition for resources among colony members. This might ensure species survival even if conditions change drastically in one location of the human oral cavity.
期刊介绍:
The ISME Journal covers the diverse and integrated areas of microbial ecology. We encourage contributions that represent major advances for the study of microbial ecosystems, communities, and interactions of microorganisms in the environment. Articles in The ISME Journal describe pioneering discoveries of wide appeal that enhance our understanding of functional and mechanistic relationships among microorganisms, their communities, and their habitats.