Transitioning metal–organic frameworks from the laboratory to market through applied research

IF 37.2 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Nature Materials Pub Date : 2024-08-08 DOI:10.1038/s41563-024-01947-4
Ashley M. Wright, Matthew T. Kapelewski, Stefan Marx, Omar K. Farha, William Morris
{"title":"Transitioning metal–organic frameworks from the laboratory to market through applied research","authors":"Ashley M. Wright, Matthew T. Kapelewski, Stefan Marx, Omar K. Farha, William Morris","doi":"10.1038/s41563-024-01947-4","DOIUrl":null,"url":null,"abstract":"<p>Metal–organic frameworks (MOFs) have captivated researchers for over 25 years, yet few have successfully transitioned to commercial markets. This Perspective elucidates the progress, challenges and opportunities in moving MOFs to market, focusing on applied research. The five applied research steps that enable technology development and demonstration are reviewed: synthesis, forming, processing (washing and activation), prototyping and compliance. Furthermore, the importance of a comprehensive techno-economic analysis incorporating a complete picture of costs and revenues is discussed. Readers can use the understanding of applied research presented herein to tackle their MOF commercialization challenges.</p>","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"23 1","pages":""},"PeriodicalIF":37.2000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41563-024-01947-4","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Metal–organic frameworks (MOFs) have captivated researchers for over 25 years, yet few have successfully transitioned to commercial markets. This Perspective elucidates the progress, challenges and opportunities in moving MOFs to market, focusing on applied research. The five applied research steps that enable technology development and demonstration are reviewed: synthesis, forming, processing (washing and activation), prototyping and compliance. Furthermore, the importance of a comprehensive techno-economic analysis incorporating a complete picture of costs and revenues is discussed. Readers can use the understanding of applied research presented herein to tackle their MOF commercialization challenges.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过应用研究将金属有机框架从实验室推向市场
25 年来,金属有机框架(MOFs)一直吸引着研究人员的目光,但成功进入商业市场的却寥寥无几。本视角以应用研究为重点,阐明了将 MOFs 推向市场的进展、挑战和机遇。回顾了实现技术开发和示范的五个应用研究步骤:合成、成型、加工(洗涤和活化)、原型设计和合规性。此外,还讨论了全面技术经济分析的重要性,其中包括成本和收入的全貌。读者可以利用本文对应用研究的理解来应对 MOF 商业化的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Materials
Nature Materials 工程技术-材料科学:综合
CiteScore
62.20
自引率
0.70%
发文量
221
审稿时长
3.2 months
期刊介绍: Nature Materials is a monthly multi-disciplinary journal aimed at bringing together cutting-edge research across the entire spectrum of materials science and engineering. It covers all applied and fundamental aspects of the synthesis/processing, structure/composition, properties, and performance of materials. The journal recognizes that materials research has an increasing impact on classical disciplines such as physics, chemistry, and biology. Additionally, Nature Materials provides a forum for the development of a common identity among materials scientists and encourages interdisciplinary collaboration. It takes an integrated and balanced approach to all areas of materials research, fostering the exchange of ideas between scientists involved in different disciplines. Nature Materials is an invaluable resource for scientists in academia and industry who are active in discovering and developing materials and materials-related concepts. It offers engaging and informative papers of exceptional significance and quality, with the aim of influencing the development of society in the future.
期刊最新文献
Organic photovoltaics surpass the 20% efficiency milestone Organic solar cells with 20.82% efficiency and high tolerance of active layer thickness through crystallization sequence manipulation Stretch-induced endogenous electric fields drive directed collective cell migration in vivo Zinc nanoparticles produced by the human body have potential antitumour applications Zinc nanoparticles from oral supplements accumulate in renal tumours and stimulate antitumour immune responses
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1