Host–microbe interactions rewire metabolism in a C. elegans model of leucine breakdown deficiency

IF 18.9 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Nature metabolism Pub Date : 2024-08-08 DOI:10.1038/s42255-024-01098-5
Yong-Uk Lee, Bennett W. Fox, Rui Guo, Brian J. Curtis, Jingfang Yu, Sookyung Kim, Shivani Nanda, Victor Baumann, L. Safak Yilmaz, Cole M. Haynes, Frank C. Schroeder, Albertha J. M. Walhout
{"title":"Host–microbe interactions rewire metabolism in a C. elegans model of leucine breakdown deficiency","authors":"Yong-Uk Lee, Bennett W. Fox, Rui Guo, Brian J. Curtis, Jingfang Yu, Sookyung Kim, Shivani Nanda, Victor Baumann, L. Safak Yilmaz, Cole M. Haynes, Frank C. Schroeder, Albertha J. M. Walhout","doi":"10.1038/s42255-024-01098-5","DOIUrl":null,"url":null,"abstract":"In humans, defects in leucine catabolism cause a variety of inborn errors in metabolism. Here, we use Caenorhabditis elegans to investigate the impact of mutations in mccc-1, an enzyme that functions in leucine breakdown. Through untargeted metabolomic and transcriptomic analyses we find extensive metabolic rewiring that helps to detoxify leucine breakdown intermediates via conversion into previously undescribed metabolites and to synthesize mevalonate, an essential metabolite. We also find that the leucine breakdown product 3,3-hydroxymethylbutyrate (HMB), commonly used as a human muscle-building supplement, is toxic to C. elegans and that bacteria modulate this toxicity. Unbiased genetic screens revealed interactions between the host and microbe, where components of bacterial pyrimidine biosynthesis mitigate HMB toxicity. Finally, upregulated ketone body metabolism genes in mccc-1 mutants provide an alternative route for biosynthesis of the mevalonate precursor 3-hydroxy-3-methylglutaryl-CoA. Our work demonstrates that a complex host–bacteria interplay rewires metabolism to allow host survival when leucine catabolism is perturbed. In a C. elegans model of defective leucine catabolism, Lee et al. analyse how the complex interplay between host and bacteria rewires metabolism to enable host survival.","PeriodicalId":19038,"journal":{"name":"Nature metabolism","volume":null,"pages":null},"PeriodicalIF":18.9000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature metabolism","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s42255-024-01098-5","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

In humans, defects in leucine catabolism cause a variety of inborn errors in metabolism. Here, we use Caenorhabditis elegans to investigate the impact of mutations in mccc-1, an enzyme that functions in leucine breakdown. Through untargeted metabolomic and transcriptomic analyses we find extensive metabolic rewiring that helps to detoxify leucine breakdown intermediates via conversion into previously undescribed metabolites and to synthesize mevalonate, an essential metabolite. We also find that the leucine breakdown product 3,3-hydroxymethylbutyrate (HMB), commonly used as a human muscle-building supplement, is toxic to C. elegans and that bacteria modulate this toxicity. Unbiased genetic screens revealed interactions between the host and microbe, where components of bacterial pyrimidine biosynthesis mitigate HMB toxicity. Finally, upregulated ketone body metabolism genes in mccc-1 mutants provide an alternative route for biosynthesis of the mevalonate precursor 3-hydroxy-3-methylglutaryl-CoA. Our work demonstrates that a complex host–bacteria interplay rewires metabolism to allow host survival when leucine catabolism is perturbed. In a C. elegans model of defective leucine catabolism, Lee et al. analyse how the complex interplay between host and bacteria rewires metabolism to enable host survival.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
宿主与微生物之间的相互作用重构了秀丽隐杆线虫亮氨酸分解缺乏症模型中的新陈代谢
在人类中,亮氨酸分解过程中的缺陷会导致各种先天性代谢错误。在这里,我们利用秀丽隐杆线虫(Caenorhabditis elegans)来研究 mccc-1 基因突变的影响,mccc-1 是一种在亮氨酸分解过程中起作用的酶。通过非靶向代谢组学和转录组学分析,我们发现广泛的代谢重构有助于通过将亮氨酸分解中间产物转化为以前未曾描述过的代谢物来解毒,并合成甲羟戊酸(一种重要的代谢物)。我们还发现,亮氨酸分解产物 3,3-hydroxymethylbutyrate (HMB)(通常用作人类增肌补充剂)对秀丽隐杆线虫具有毒性,而细菌可调节这种毒性。无偏见的基因筛选揭示了宿主与微生物之间的相互作用,其中细菌嘧啶生物合成的成分减轻了 HMB 的毒性。最后,mccc-1 突变体中上调的酮体代谢基因为甲羟戊酸前体 3-hydroxy-3-methylglutaryl-CoA 的生物合成提供了另一条途径。我们的研究表明,当亮氨酸分解代谢受到干扰时,宿主与细菌之间复杂的相互作用会重新安排新陈代谢,使宿主得以生存。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature metabolism
Nature metabolism ENDOCRINOLOGY & METABOLISM-
CiteScore
27.50
自引率
2.40%
发文量
170
期刊介绍: Nature Metabolism is a peer-reviewed scientific journal that covers a broad range of topics in metabolism research. It aims to advance the understanding of metabolic and homeostatic processes at a cellular and physiological level. The journal publishes research from various fields, including fundamental cell biology, basic biomedical and translational research, and integrative physiology. It focuses on how cellular metabolism affects cellular function, the physiology and homeostasis of organs and tissues, and the regulation of organismal energy homeostasis. It also investigates the molecular pathophysiology of metabolic diseases such as diabetes and obesity, as well as their treatment. Nature Metabolism follows the standards of other Nature-branded journals, with a dedicated team of professional editors, rigorous peer-review process, high standards of copy-editing and production, swift publication, and editorial independence. The journal has a high impact factor, has a certain influence in the international area, and is deeply concerned and cited by the majority of scholars.
期刊最新文献
Milk intake, lactase non-persistence and type 2 diabetes risk in Chinese adults Reply to: Milk intake, lactase non-persistence and type 2 diabetes risk in Chinese adults O-GlcNAc transferase regulates glycolytic metabolon formation on mitochondria to enhance ATP production Organization of a functional glycolytic metabolon on mitochondria for metabolic efficiency Long-term exercise training has positive effects on adipose tissue in overweight or obesity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1