Qiangbing Guo, Qiuhong Zhang, Tan Zhang, Jun Zhou, Shumin Xiao, Shijie Wang, Yuan Ping Feng, Cheng-Wei Qiu
{"title":"Colossal in-plane optical anisotropy in a two-dimensional van der Waals crystal","authors":"Qiangbing Guo, Qiuhong Zhang, Tan Zhang, Jun Zhou, Shumin Xiao, Shijie Wang, Yuan Ping Feng, Cheng-Wei Qiu","doi":"10.1038/s41566-024-01501-3","DOIUrl":null,"url":null,"abstract":"Polarization, a fundamental property of light, has been widely exploited from quantum physics to high-dimensional optics. Materials with intrinsic optical anisotropy, such as dichroism and birefringence, are central to light polarization control, including the development of polarizers, waveplates, mirrors and phase-matching elements. Therefore, materials with strong optical anisotropy have been long-sought. Recently, two-dimensional van der Waals crystals show high optical anisotropy but are mostly restricted to the out-of-plane direction, which is challenging to access in optical engineering. Here we report a two-dimensional van der Waals material, NbOCl2, that exhibits sharp electronic and structural contrast between its in-plane orthogonal axes. Colossal in-plane optical anisotropy—linear dichroism (up to 99% in ultraviolet) and birefringence (0.26–0.46 within a wide visible–near-infrared transparency window)—is experimentally demonstrated. Our findings provide a powerful and easy-to-access recipe for ultracompact integrated polarization industries. A two-dimensional van der Waals material, NbOCl2, that simultaneously exhibits near-unity linear dichroism (~99%) over 100 nm bandwidth in ultraviolet regime and large birefringence (0.26–0.46) within a wide visible–near-infrared transparency window is reported.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"18 11","pages":"1170-1175"},"PeriodicalIF":32.3000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Photonics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s41566-024-01501-3","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Polarization, a fundamental property of light, has been widely exploited from quantum physics to high-dimensional optics. Materials with intrinsic optical anisotropy, such as dichroism and birefringence, are central to light polarization control, including the development of polarizers, waveplates, mirrors and phase-matching elements. Therefore, materials with strong optical anisotropy have been long-sought. Recently, two-dimensional van der Waals crystals show high optical anisotropy but are mostly restricted to the out-of-plane direction, which is challenging to access in optical engineering. Here we report a two-dimensional van der Waals material, NbOCl2, that exhibits sharp electronic and structural contrast between its in-plane orthogonal axes. Colossal in-plane optical anisotropy—linear dichroism (up to 99% in ultraviolet) and birefringence (0.26–0.46 within a wide visible–near-infrared transparency window)—is experimentally demonstrated. Our findings provide a powerful and easy-to-access recipe for ultracompact integrated polarization industries. A two-dimensional van der Waals material, NbOCl2, that simultaneously exhibits near-unity linear dichroism (~99%) over 100 nm bandwidth in ultraviolet regime and large birefringence (0.26–0.46) within a wide visible–near-infrared transparency window is reported.
期刊介绍:
Nature Photonics is a monthly journal dedicated to the scientific study and application of light, known as Photonics. It publishes top-quality, peer-reviewed research across all areas of light generation, manipulation, and detection.
The journal encompasses research into the fundamental properties of light and its interactions with matter, as well as the latest developments in optoelectronic devices and emerging photonics applications. Topics covered include lasers, LEDs, imaging, detectors, optoelectronic devices, quantum optics, biophotonics, optical data storage, spectroscopy, fiber optics, solar energy, displays, terahertz technology, nonlinear optics, plasmonics, nanophotonics, and X-rays.
In addition to research papers and review articles summarizing scientific findings in optoelectronics, Nature Photonics also features News and Views pieces and research highlights. It uniquely includes articles on the business aspects of the industry, such as technology commercialization and market analysis, offering a comprehensive perspective on the field.