Evaluating the mechanisms and performance of Geosynthetic-Reinforced Load Transfer Platform of pile-supported embankments design methods

IF 4.7 1区 工程技术 Q1 ENGINEERING, GEOLOGICAL Geotextiles and Geomembranes Pub Date : 2024-08-03 DOI:10.1016/j.geotexmem.2024.07.009
{"title":"Evaluating the mechanisms and performance of Geosynthetic-Reinforced Load Transfer Platform of pile-supported embankments design methods","authors":"","doi":"10.1016/j.geotexmem.2024.07.009","DOIUrl":null,"url":null,"abstract":"<div><p>This study evaluates the existing design methods of Geosynthetic-Reinforced Load Transfer Platform for Pile-Supported Embankments (GLTP-PSE) through comprehensive 3D Finite Element (FE) analyses. It scrutinizes the assumed arching mechanisms, methodologies, design criteria (arching height, maximum strain, differential settlement, and T in geosynthetics), and overall performance of these methods. The 3D FE analysis results and measurements from two case studies were compared with six established GLTP-PSE design methods based on the four design criteria. Key findings include the identification of a progressive concentrated ellipsoid as the developed soil arching formation, with arching height dependent on the embankment equivalent height (including embankment and traffic load), pile spacing, maximum strain along the geosynthetics, and the number of geosynthetic layers. The load distribution on geosynthetic reinforcement was observed to align more closely with a non-linear inverse triangle. These insights led to recommendations for updating existing design methods, enhancing the accuracy and reliability of GLTP-PSE designs. The study's outcomes contribute significantly to advancing and refining GLTP-PSE design practices by providing a deeper understanding of soil arching mechanisms and the performance of geosynthetic reinforcements.</p></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geotextiles and Geomembranes","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S026611442400075X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study evaluates the existing design methods of Geosynthetic-Reinforced Load Transfer Platform for Pile-Supported Embankments (GLTP-PSE) through comprehensive 3D Finite Element (FE) analyses. It scrutinizes the assumed arching mechanisms, methodologies, design criteria (arching height, maximum strain, differential settlement, and T in geosynthetics), and overall performance of these methods. The 3D FE analysis results and measurements from two case studies were compared with six established GLTP-PSE design methods based on the four design criteria. Key findings include the identification of a progressive concentrated ellipsoid as the developed soil arching formation, with arching height dependent on the embankment equivalent height (including embankment and traffic load), pile spacing, maximum strain along the geosynthetics, and the number of geosynthetic layers. The load distribution on geosynthetic reinforcement was observed to align more closely with a non-linear inverse triangle. These insights led to recommendations for updating existing design methods, enhancing the accuracy and reliability of GLTP-PSE designs. The study's outcomes contribute significantly to advancing and refining GLTP-PSE design practices by providing a deeper understanding of soil arching mechanisms and the performance of geosynthetic reinforcements.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
评估桩支撑路堤设计方法的土工合成材料加固荷载传递平台的机理和性能
本研究通过全面的三维有限元(FE)分析,对现有的桩支路堤土工合成材料加固荷载传递平台(GLTP-PSE)设计方法进行了评估。它仔细研究了这些方法的假定起拱机制、方法、设计标准(起拱高度、最大应变、差异沉降和土工合成材料 T)和整体性能。根据四个设计标准,将两个案例研究的三维 FE 分析结果和测量结果与六种既定的 GLTP-PSE 设计方法进行了比较。主要发现包括确定了一个渐进的集中椭球体作为土壤拱起的形成,拱起高度取决于路堤等效高度(包括路堤和交通荷载)、桩距、土工合成材料沿线的最大应变以及土工合成材料层数。据观察,土工合成材料加固体上的荷载分布更接近于非线性反三角。这些见解为更新现有设计方法、提高 GLTP-PSE 设计的准确性和可靠性提出了建议。这项研究的成果加深了人们对土壤起拱机理和土工合成材料加固性能的理解,从而为推进和完善 GLTP-PSE 设计实践做出了重要贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Geotextiles and Geomembranes
Geotextiles and Geomembranes 地学-地球科学综合
CiteScore
9.50
自引率
21.20%
发文量
111
审稿时长
59 days
期刊介绍: The range of products and their applications has expanded rapidly over the last decade with geotextiles and geomembranes being specified world wide. This rapid growth is paralleled by a virtual explosion of technology. Current reference books and even manufacturers' sponsored publications tend to date very quickly and the need for a vehicle to bring together and discuss the growing body of technology now available has become evident. Geotextiles and Geomembranes fills this need and provides a forum for the dissemination of information amongst research workers, designers, users and manufacturers. By providing a growing fund of information the journal increases general awareness, prompts further research and assists in the establishment of international codes and regulations.
期刊最新文献
Seismic response and mitigation measures for T shape retaining wall in liquefiable site Stress-strain responses of EPS geofoam upon cyclic simple shearing: Experimental investigations and constitutive modeling A large-size model test study on the consolidation effect of construction waste slurry under self-weight and bottom vacuum preloading Observations from opening of a novel geotextile tube connection in field test site Liquefaction and reliquefaction mitigation of sand specimen treated with prefabricated vertical drains: An experimental investigation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1