Synthesis, characterization, and biological evaluation of novel cobalt(II) complexes with β-diketonates: crystal structure determination, BSA binding properties and molecular docking study
Nenad Joksimović, Jelena Petronijević, Dušan Ćoćić, Marija Ristić, Kristina Mihajlović, Nenad Janković, Emilija Milović, Olivera Klisurić, Nevena Petrović, Marijana Kosanić
{"title":"Synthesis, characterization, and biological evaluation of novel cobalt(II) complexes with β-diketonates: crystal structure determination, BSA binding properties and molecular docking study","authors":"Nenad Joksimović, Jelena Petronijević, Dušan Ćoćić, Marija Ristić, Kristina Mihajlović, Nenad Janković, Emilija Milović, Olivera Klisurić, Nevena Petrović, Marijana Kosanić","doi":"10.1007/s00775-024-02069-7","DOIUrl":null,"url":null,"abstract":"<div><p>In order to discover a new antibiotic drug with better or similar activity of the already existing drugs, a series of novel cobalt(II) complexes with <i>β</i>-diketonate as ligands is synthesized and tested on four strains of bacteria and four species of fungi. All compounds showed notable antimicrobial activity against all tested strains. More importantly, some cobalt(II) complexes displayed greater activity than ketoconazole. It is important to notice that on the tested strains <i>Mucor mucedo</i> and <i>Penicillium italicum</i> complex <b>2B</b> showed five times better activity compared to ketoconazole, while complex <b>2D</b> had two times better activity on <i>Penicillium italicum</i> strain compared to ketoconazole. Moreover, investigations with bovine serum albumin were performed. Investigations showed that the tested complexes have an appropriate affinity for binding to bovine serum albumin. In addition, the molecular docking study was performed to investigate more specifically the sites and binding mode of the tested cobalt(II) complexes with <i>β</i>-diketonate as ligands to bovine serum albumin, tyrosyl-tRNA synthetase, topoisomerase II DNA gyrase, and cytochrome P450 14 alpha-sterol demethylase. In conclusion, all the results indicated the great prospective of the novel cobalt complexes for some potential clinical applications in the future.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":603,"journal":{"name":"JBIC Journal of Biological Inorganic Chemistry","volume":"29 5","pages":"541 - 553"},"PeriodicalIF":2.7000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JBIC Journal of Biological Inorganic Chemistry","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1007/s00775-024-02069-7","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In order to discover a new antibiotic drug with better or similar activity of the already existing drugs, a series of novel cobalt(II) complexes with β-diketonate as ligands is synthesized and tested on four strains of bacteria and four species of fungi. All compounds showed notable antimicrobial activity against all tested strains. More importantly, some cobalt(II) complexes displayed greater activity than ketoconazole. It is important to notice that on the tested strains Mucor mucedo and Penicillium italicum complex 2B showed five times better activity compared to ketoconazole, while complex 2D had two times better activity on Penicillium italicum strain compared to ketoconazole. Moreover, investigations with bovine serum albumin were performed. Investigations showed that the tested complexes have an appropriate affinity for binding to bovine serum albumin. In addition, the molecular docking study was performed to investigate more specifically the sites and binding mode of the tested cobalt(II) complexes with β-diketonate as ligands to bovine serum albumin, tyrosyl-tRNA synthetase, topoisomerase II DNA gyrase, and cytochrome P450 14 alpha-sterol demethylase. In conclusion, all the results indicated the great prospective of the novel cobalt complexes for some potential clinical applications in the future.
期刊介绍:
Biological inorganic chemistry is a growing field of science that embraces the principles of biology and inorganic chemistry and impacts other fields ranging from medicine to the environment. JBIC (Journal of Biological Inorganic Chemistry) seeks to promote this field internationally. The Journal is primarily concerned with advances in understanding the role of metal ions within a biological matrix—be it a protein, DNA/RNA, or a cell, as well as appropriate model studies. Manuscripts describing high-quality original research on the above topics in English are invited for submission to this Journal. The Journal publishes original articles, minireviews, and commentaries on debated issues.