Peter R Nicholson, Christiana J Raymond-Pope, Thomas J Lillquist, Angela S Bruzina, Jarrod A Call, Sarah M Greising
{"title":"In Sequence Antifibrotic Treatment and Rehabilitation after Volumetric Muscle Loss Injury.","authors":"Peter R Nicholson, Christiana J Raymond-Pope, Thomas J Lillquist, Angela S Bruzina, Jarrod A Call, Sarah M Greising","doi":"10.1089/wound.2024.0109","DOIUrl":null,"url":null,"abstract":"<p><p><b>Objective:</b> Mitigation of local pathological fibrotic tissue deposition is a target area of interest for volumetric muscle loss (VML); nintedanib has shown promise for reduction of fibrosis after VML. Herein, studies investigate how in sequence antifibrotic treatment administered immediately after VML and delayed rehabilitation could improve functional recovery after VML. <b>Approach:</b> Adult male C57BL/6 mice (<i>n</i> = 36) were VML injured or naïve and randomly assigned to nintedanib (6 mg/kg/day) for 2 weeks or were left untreated; in addition, mice were given access to a running wheel beginning at 2 weeks until 8 weeks. Terminally, mice underwent maximal <i>in vivo</i> functional testing in addition to quantification of muscle collagen content and fibrotic and myogenic markers. <b>Results:</b> Daily running distances (<i>p</i> = 0.17) were similar across groups, but weekly averages were greatest in the VML antifibrotic group (<i>p</i> < 0.01). As expected, 2 weeks post-VML, all VML-injured mice had lower maximal torque normalized to body and muscle mass than naïve. By 8 weeks, running alone after VML did not recover function, but mice that received the antifibrotic treatment before running, had greater torque than those untreated (<i>p</i> < 0.01), with functional measurements similar to naïve muscle that ran, indicating improved functional recovery. <b>Innovation:</b> The ability to translate current Food and Drug Administration-approved pharmaceuticals, in a repurposing approach, is critical to mitigate the pathophysiologic consequences of VML in support of functional recovery. However, foundational and translational studies are still needed to understand feasibility and efficacy. <b>Conclusions:</b> Early prevention of fibrotic tissue deposition supports improvements in muscle quality and force chronically after VML injury.</p>","PeriodicalId":7413,"journal":{"name":"Advances in wound care","volume":" ","pages":"101-113"},"PeriodicalIF":5.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in wound care","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/wound.2024.0109","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"DERMATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Mitigation of local pathological fibrotic tissue deposition is a target area of interest for volumetric muscle loss (VML); nintedanib has shown promise for reduction of fibrosis after VML. Herein, studies investigate how in sequence antifibrotic treatment administered immediately after VML and delayed rehabilitation could improve functional recovery after VML. Approach: Adult male C57BL/6 mice (n = 36) were VML injured or naïve and randomly assigned to nintedanib (6 mg/kg/day) for 2 weeks or were left untreated; in addition, mice were given access to a running wheel beginning at 2 weeks until 8 weeks. Terminally, mice underwent maximal in vivo functional testing in addition to quantification of muscle collagen content and fibrotic and myogenic markers. Results: Daily running distances (p = 0.17) were similar across groups, but weekly averages were greatest in the VML antifibrotic group (p < 0.01). As expected, 2 weeks post-VML, all VML-injured mice had lower maximal torque normalized to body and muscle mass than naïve. By 8 weeks, running alone after VML did not recover function, but mice that received the antifibrotic treatment before running, had greater torque than those untreated (p < 0.01), with functional measurements similar to naïve muscle that ran, indicating improved functional recovery. Innovation: The ability to translate current Food and Drug Administration-approved pharmaceuticals, in a repurposing approach, is critical to mitigate the pathophysiologic consequences of VML in support of functional recovery. However, foundational and translational studies are still needed to understand feasibility and efficacy. Conclusions: Early prevention of fibrotic tissue deposition supports improvements in muscle quality and force chronically after VML injury.
期刊介绍:
Advances in Wound Care rapidly shares research from bench to bedside, with wound care applications for burns, major trauma, blast injuries, surgery, and diabetic ulcers. The Journal provides a critical, peer-reviewed forum for the field of tissue injury and repair, with an emphasis on acute and chronic wounds.
Advances in Wound Care explores novel research approaches and practices to deliver the latest scientific discoveries and developments.
Advances in Wound Care coverage includes:
Skin bioengineering,
Skin and tissue regeneration,
Acute, chronic, and complex wounds,
Dressings,
Anti-scar strategies,
Inflammation,
Burns and healing,
Biofilm,
Oxygen and angiogenesis,
Critical limb ischemia,
Military wound care,
New devices and technologies.