Chaoping Yu, Yang Huang, Jiangang Xie, Chujun Duan, Shanshou Liu, Wei Zhao, Yutong Wang, Ran Zhuang, Junjie Li, Wen Yin
{"title":"HMGB1 released from pyroptotic vascular endothelial cells promotes immune disorders in exertional heatstroke.","authors":"Chaoping Yu, Yang Huang, Jiangang Xie, Chujun Duan, Shanshou Liu, Wei Zhao, Yutong Wang, Ran Zhuang, Junjie Li, Wen Yin","doi":"10.1080/02656736.2024.2378867","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and objective: </strong>Exertional heatstroke (EHS) mainly occurs in healthy young people with rapid onset and high mortality. EHS immune disorders can cause systemic inflammatory responses and multiple organ failure; however, the underlying mechanisms remain unclear. As high mobility group box 1 (HMGB1) is a prototypical alarmin that activates inflammatory and immune responses, this study aimed to investigate the effect and mechanism of HMGB1 in the pathogenesis of EHS.</p><p><strong>Methods: </strong>Peripheral blood mononuclear cell (PBMC) transcriptome sequencing of healthy volunteers, classical heatstroke patients, and EHS patients was performed. A mouse model of EHS was established and murine tissue damage was evaluated by H&E staining. HMGB1 localization and release were visualized using immunofluorescence staining. Human umbilical vein endothelial cells (HUVECs) and THP-1 cells were co-cultured to study the effects of HMGB1 on macrophages. A neutralizing anti-HMGB1 antibody was used to evaluate the efficacy of EHS treatment in mice.</p><p><strong>Results: </strong>Plasma and serum HMGB1 levels were significantly increased in EHS patients or mice. EHS-induced endothelial cell pyroptosis promoted HMGB1 release in mice. HMGB1 derived from endothelial cell pyroptosis enhanced macrophage pyroptosis, resulting in immune disorders under EHS conditions. Administration of anti-HMGB1 markedly alleviated tissue injury and systemic inflammatory responses after EHS.</p><p><strong>Conclusions: </strong>The release of HMGB1 from pyroptotic endothelial cells after EHS promotes pyroptosis of macrophages and systemic inflammatory response, and HMGB1-neutralizing antibody therapy has good application prospects for EHS.</p>","PeriodicalId":14137,"journal":{"name":"International Journal of Hyperthermia","volume":"41 1","pages":"2378867"},"PeriodicalIF":3.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hyperthermia","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/02656736.2024.2378867","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/8 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background and objective: Exertional heatstroke (EHS) mainly occurs in healthy young people with rapid onset and high mortality. EHS immune disorders can cause systemic inflammatory responses and multiple organ failure; however, the underlying mechanisms remain unclear. As high mobility group box 1 (HMGB1) is a prototypical alarmin that activates inflammatory and immune responses, this study aimed to investigate the effect and mechanism of HMGB1 in the pathogenesis of EHS.
Methods: Peripheral blood mononuclear cell (PBMC) transcriptome sequencing of healthy volunteers, classical heatstroke patients, and EHS patients was performed. A mouse model of EHS was established and murine tissue damage was evaluated by H&E staining. HMGB1 localization and release were visualized using immunofluorescence staining. Human umbilical vein endothelial cells (HUVECs) and THP-1 cells were co-cultured to study the effects of HMGB1 on macrophages. A neutralizing anti-HMGB1 antibody was used to evaluate the efficacy of EHS treatment in mice.
Results: Plasma and serum HMGB1 levels were significantly increased in EHS patients or mice. EHS-induced endothelial cell pyroptosis promoted HMGB1 release in mice. HMGB1 derived from endothelial cell pyroptosis enhanced macrophage pyroptosis, resulting in immune disorders under EHS conditions. Administration of anti-HMGB1 markedly alleviated tissue injury and systemic inflammatory responses after EHS.
Conclusions: The release of HMGB1 from pyroptotic endothelial cells after EHS promotes pyroptosis of macrophages and systemic inflammatory response, and HMGB1-neutralizing antibody therapy has good application prospects for EHS.