{"title":"Interacting particle models on the impact of spatially heterogeneous human behavioral factors on dynamics of infectious diseases.","authors":"Yunfeng Xiong, Chuntian Wang, Yuan Zhang","doi":"10.1371/journal.pcbi.1012345","DOIUrl":null,"url":null,"abstract":"<p><p>Human behaviors have non-negligible impacts on spread of contagious disease. For instance, large-scale gathering and high mobility of population could lead to accelerated disease transmission, while public behavioral changes in response to pandemics may effectively reduce contacts and suppress the peak of the outbreak. In order to understand how spatial characteristics like population mobility and clustering interplay with epidemic outbreaks, we formulate a stochastic-statistical environment-epidemic dynamic system (SEEDS) via an agent-based biased random walk model on a two-dimensional lattice. The \"popularity\" and \"awareness\" variables are taken into consideration to capture human natural and preventive behavioral factors, which are assumed to guide and bias agent movement in a combined way. It is found that the presence of the spatial heterogeneity, like social influence locality and spatial clustering induced by self-aggregation, potentially suppresses the contacts between agents and consequently flats the epidemic curve. Surprisedly, disease responses might not necessarily reduce the susceptibility of informed individuals and even aggravate disease outbreak if each individual responds independently upon their awareness. The disease control is achieved effectively only if there are coordinated public-health interventions and public compliance to these measures. Therefore, our model may be useful for quantitative evaluations of a variety of public-health policies.</p>","PeriodicalId":20241,"journal":{"name":"PLoS Computational Biology","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11335169/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pcbi.1012345","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Human behaviors have non-negligible impacts on spread of contagious disease. For instance, large-scale gathering and high mobility of population could lead to accelerated disease transmission, while public behavioral changes in response to pandemics may effectively reduce contacts and suppress the peak of the outbreak. In order to understand how spatial characteristics like population mobility and clustering interplay with epidemic outbreaks, we formulate a stochastic-statistical environment-epidemic dynamic system (SEEDS) via an agent-based biased random walk model on a two-dimensional lattice. The "popularity" and "awareness" variables are taken into consideration to capture human natural and preventive behavioral factors, which are assumed to guide and bias agent movement in a combined way. It is found that the presence of the spatial heterogeneity, like social influence locality and spatial clustering induced by self-aggregation, potentially suppresses the contacts between agents and consequently flats the epidemic curve. Surprisedly, disease responses might not necessarily reduce the susceptibility of informed individuals and even aggravate disease outbreak if each individual responds independently upon their awareness. The disease control is achieved effectively only if there are coordinated public-health interventions and public compliance to these measures. Therefore, our model may be useful for quantitative evaluations of a variety of public-health policies.
期刊介绍:
PLOS Computational Biology features works of exceptional significance that further our understanding of living systems at all scales—from molecules and cells, to patient populations and ecosystems—through the application of computational methods. Readers include life and computational scientists, who can take the important findings presented here to the next level of discovery.
Research articles must be declared as belonging to a relevant section. More information about the sections can be found in the submission guidelines.
Research articles should model aspects of biological systems, demonstrate both methodological and scientific novelty, and provide profound new biological insights.
Generally, reliability and significance of biological discovery through computation should be validated and enriched by experimental studies. Inclusion of experimental validation is not required for publication, but should be referenced where possible. Inclusion of experimental validation of a modest biological discovery through computation does not render a manuscript suitable for PLOS Computational Biology.
Research articles specifically designated as Methods papers should describe outstanding methods of exceptional importance that have been shown, or have the promise to provide new biological insights. The method must already be widely adopted, or have the promise of wide adoption by a broad community of users. Enhancements to existing published methods will only be considered if those enhancements bring exceptional new capabilities.