scRNMF: An imputation method for single-cell RNA-seq data by robust and non-negative matrix factorization.

IF 3.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS PLoS Computational Biology Pub Date : 2024-08-08 eCollection Date: 2024-08-01 DOI:10.1371/journal.pcbi.1012339
Yuqing Qian, Quan Zou, Mengyuan Zhao, Yi Liu, Fei Guo, Yijie Ding
{"title":"scRNMF: An imputation method for single-cell RNA-seq data by robust and non-negative matrix factorization.","authors":"Yuqing Qian, Quan Zou, Mengyuan Zhao, Yi Liu, Fei Guo, Yijie Ding","doi":"10.1371/journal.pcbi.1012339","DOIUrl":null,"url":null,"abstract":"<p><p>Single-cell RNA sequencing (scRNA-seq) has emerged as a powerful tool in genomics research, enabling the analysis of gene expression at the individual cell level. However, scRNA-seq data often suffer from a high rate of dropouts, where certain genes fail to be detected in specific cells due to technical limitations. This missing data can introduce biases and hinder downstream analysis. To overcome this challenge, the development of effective imputation methods has become crucial in the field of scRNA-seq data analysis. Here, we propose an imputation method based on robust and non-negative matrix factorization (scRNMF). Instead of other matrix factorization algorithms, scRNMF integrates two loss functions: L2 loss and C-loss. The L2 loss function is highly sensitive to outliers, which can introduce substantial errors. We utilize the C-loss function when dealing with zero values in the raw data. The primary advantage of the C-loss function is that it imposes a smaller punishment for larger errors, which results in more robust factorization when handling outliers. Various datasets of different sizes and zero rates are used to evaluate the performance of scRNMF against other state-of-the-art methods. Our method demonstrates its power and stability as a tool for imputation of scRNA-seq data.</p>","PeriodicalId":20241,"journal":{"name":"PLoS Computational Biology","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11338450/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pcbi.1012339","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Single-cell RNA sequencing (scRNA-seq) has emerged as a powerful tool in genomics research, enabling the analysis of gene expression at the individual cell level. However, scRNA-seq data often suffer from a high rate of dropouts, where certain genes fail to be detected in specific cells due to technical limitations. This missing data can introduce biases and hinder downstream analysis. To overcome this challenge, the development of effective imputation methods has become crucial in the field of scRNA-seq data analysis. Here, we propose an imputation method based on robust and non-negative matrix factorization (scRNMF). Instead of other matrix factorization algorithms, scRNMF integrates two loss functions: L2 loss and C-loss. The L2 loss function is highly sensitive to outliers, which can introduce substantial errors. We utilize the C-loss function when dealing with zero values in the raw data. The primary advantage of the C-loss function is that it imposes a smaller punishment for larger errors, which results in more robust factorization when handling outliers. Various datasets of different sizes and zero rates are used to evaluate the performance of scRNMF against other state-of-the-art methods. Our method demonstrates its power and stability as a tool for imputation of scRNA-seq data.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
scRNMF:通过稳健的非负矩阵因式分解对单细胞 RNA-seq 数据进行估算的方法。
单细胞 RNA 测序(scRNA-seq)已成为基因组学研究中的一种强大工具,可用于分析单个细胞水平的基因表达。然而,scRNA-seq 数据往往存在较高的丢失率,即由于技术限制,某些基因在特定细胞中未能被检测到。这种缺失数据会带来偏差,阻碍下游分析。为了克服这一挑战,开发有效的估算方法已成为 scRNA-seq 数据分析领域的关键。在这里,我们提出了一种基于稳健非负矩阵因式分解(scRNMF)的估算方法。与其他矩阵因式分解算法不同,scRNMF 集成了两个损失函数:L2 损失和 C 损失。L2 损失函数对异常值非常敏感,会带来很大的误差。在处理原始数据中的零值时,我们使用 C-loss 函数。C-loss 函数的主要优势在于,它对较大误差的惩罚较小,因此在处理异常值时,因式分解更为稳健。我们使用了各种不同规模和零值率的数据集来评估 scRNMF 与其他最先进方法的性能。我们的方法证明了它作为 scRNA-seq 数据估算工具的强大功能和稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
PLoS Computational Biology
PLoS Computational Biology BIOCHEMICAL RESEARCH METHODS-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
7.10
自引率
4.70%
发文量
820
审稿时长
2.5 months
期刊介绍: PLOS Computational Biology features works of exceptional significance that further our understanding of living systems at all scales—from molecules and cells, to patient populations and ecosystems—through the application of computational methods. Readers include life and computational scientists, who can take the important findings presented here to the next level of discovery. Research articles must be declared as belonging to a relevant section. More information about the sections can be found in the submission guidelines. Research articles should model aspects of biological systems, demonstrate both methodological and scientific novelty, and provide profound new biological insights. Generally, reliability and significance of biological discovery through computation should be validated and enriched by experimental studies. Inclusion of experimental validation is not required for publication, but should be referenced where possible. Inclusion of experimental validation of a modest biological discovery through computation does not render a manuscript suitable for PLOS Computational Biology. Research articles specifically designated as Methods papers should describe outstanding methods of exceptional importance that have been shown, or have the promise to provide new biological insights. The method must already be widely adopted, or have the promise of wide adoption by a broad community of users. Enhancements to existing published methods will only be considered if those enhancements bring exceptional new capabilities.
期刊最新文献
A computational analysis of the oncogenic and anti-tumor immunity role of P4HA3 in human cancers. Assessing the effect of model specification and prior sensitivity on Bayesian tests of temporal signal. During haptic communication, the central nervous system compensates distinctly for delay and noise. Structure-aware annotation of leucine-rich repeat domains. A mechanistic model of in vitro plasma activation to evaluate therapeutic kallikrein-kinin system inhibitors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1