Guannan Sun, Xin Sun, Huijuan Su, Yuqin Liao, Di Wei, Hanqing Ma, Xinyu Li, Ran Fan, Xiaowei Ren
{"title":"RegionSizeR- A Novel App for Regional Sample Size Planning in MRCTs.","authors":"Guannan Sun, Xin Sun, Huijuan Su, Yuqin Liao, Di Wei, Hanqing Ma, Xinyu Li, Ran Fan, Xiaowei Ren","doi":"10.1007/s43441-024-00679-6","DOIUrl":null,"url":null,"abstract":"<p><p>In multi-regional clinical trials, planning the sample size for participating regions is essential for the evaluation of the treatment effect consistency across regions. Based on the MRCT design and sample size allocation to regions, consistency probability is usually used to predict the consistent trend between regions and the overall population, while preserving a certain proportion of the overall treatment effect. Specific enrollment characteristics in a region of interest should also be considered during the time of the sample size planning. To facilitate efficient and harmonized regional sample size planning, we have developed RegionSizeR, a comprehensive and user-friendly interactive web-based R shiny application that can be obtained from https://github.com/rsr-ss/RegionSizeR . This simulation-based app can serve as an initial point for discussions on sample size allocation plans, following preservation of treatment effect method in ICH E17. The app accommodates various types of endpoints and designs, including continuous, binary, and time-to-event endpoints, for superiority, non-inferiority, and MCP-Mod designs. To ensure the validity of this app, independent testing is conducted allowing a discrepancy of no more than 1% across all results considering various scenarios.</p>","PeriodicalId":23084,"journal":{"name":"Therapeutic innovation & regulatory science","volume":" ","pages":"1071-1079"},"PeriodicalIF":2.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11530476/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Therapeutic innovation & regulatory science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s43441-024-00679-6","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/8 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In multi-regional clinical trials, planning the sample size for participating regions is essential for the evaluation of the treatment effect consistency across regions. Based on the MRCT design and sample size allocation to regions, consistency probability is usually used to predict the consistent trend between regions and the overall population, while preserving a certain proportion of the overall treatment effect. Specific enrollment characteristics in a region of interest should also be considered during the time of the sample size planning. To facilitate efficient and harmonized regional sample size planning, we have developed RegionSizeR, a comprehensive and user-friendly interactive web-based R shiny application that can be obtained from https://github.com/rsr-ss/RegionSizeR . This simulation-based app can serve as an initial point for discussions on sample size allocation plans, following preservation of treatment effect method in ICH E17. The app accommodates various types of endpoints and designs, including continuous, binary, and time-to-event endpoints, for superiority, non-inferiority, and MCP-Mod designs. To ensure the validity of this app, independent testing is conducted allowing a discrepancy of no more than 1% across all results considering various scenarios.
期刊介绍:
Therapeutic Innovation & Regulatory Science (TIRS) is the official scientific journal of DIA that strives to advance medical product discovery, development, regulation, and use through the publication of peer-reviewed original and review articles, commentaries, and letters to the editor across the spectrum of converting biomedical science into practical solutions to advance human health.
The focus areas of the journal are as follows:
Biostatistics
Clinical Trials
Product Development and Innovation
Global Perspectives
Policy
Regulatory Science
Product Safety
Special Populations