The potential of MXene-based materials in fluorescence-based sensing/biosensing of ionic and organic contaminants in environment and food samples: Recent advancements and challenges
{"title":"The potential of MXene-based materials in fluorescence-based sensing/biosensing of ionic and organic contaminants in environment and food samples: Recent advancements and challenges","authors":"Vanish Kumar , Rinkal Chopada , Ashwani Singh , Nitin Kumar , Mrinmoy Misra , Ki-Hyun Kim","doi":"10.1016/j.cis.2024.103264","DOIUrl":null,"url":null,"abstract":"<div><p>MXenes belong to one of the recently developed advanced materials with tremendous potential for diverse sensing applications. To date, various types of MXene-based materials have been developed to generate direct/indirect ultrasensitive sensing signals against various forms of analytes via fluorescence quenching or enhancement. In this work, the fluorescence sensing/biosensing capabilities of the MXene-based materials have been explored and evaluated against a list of ionic/emerging pollutants in environment and food matrices. The suitability of an MXene-based sensing approach is also validated through the assessment of the performance based on the basic quality assurance parameters, e.g., limit of detection (LOD), sensing range, and response time. Accordingly, the best performing MXene-based materials are selected and recommended for the given target(s) to help facilitate their scalable applications under real-world conditions.</p></div>","PeriodicalId":239,"journal":{"name":"Advances in Colloid and Interface Science","volume":"332 ","pages":"Article 103264"},"PeriodicalIF":15.9000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001868624001878","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
MXenes belong to one of the recently developed advanced materials with tremendous potential for diverse sensing applications. To date, various types of MXene-based materials have been developed to generate direct/indirect ultrasensitive sensing signals against various forms of analytes via fluorescence quenching or enhancement. In this work, the fluorescence sensing/biosensing capabilities of the MXene-based materials have been explored and evaluated against a list of ionic/emerging pollutants in environment and food matrices. The suitability of an MXene-based sensing approach is also validated through the assessment of the performance based on the basic quality assurance parameters, e.g., limit of detection (LOD), sensing range, and response time. Accordingly, the best performing MXene-based materials are selected and recommended for the given target(s) to help facilitate their scalable applications under real-world conditions.
期刊介绍:
"Advances in Colloid and Interface Science" is an international journal that focuses on experimental and theoretical developments in interfacial and colloidal phenomena. The journal covers a wide range of disciplines including biology, chemistry, physics, and technology.
The journal accepts review articles on any topic within the scope of colloid and interface science. These articles should provide an in-depth analysis of the subject matter, offering a critical review of the current state of the field. The author's informed opinion on the topic should also be included. The manuscript should compare and contrast ideas found in the reviewed literature and address the limitations of these ideas.
Typically, the articles published in this journal are written by recognized experts in the field.