SAFE-OPT: a Bayesian optimization algorithm for learning optimal deep brain stimulation parameters with safety constraints.

Eric R Cole, Mark J Connolly, Mihir Ghetiya, Mohammad E S Sendi, Adam Kashlan, Thomas E Eggers, Robert E Gross
{"title":"SAFE-OPT: a Bayesian optimization algorithm for learning optimal deep brain stimulation parameters with safety constraints.","authors":"Eric R Cole, Mark J Connolly, Mihir Ghetiya, Mohammad E S Sendi, Adam Kashlan, Thomas E Eggers, Robert E Gross","doi":"10.1088/1741-2552/ad6cf3","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective.</i>To treat neurological and psychiatric diseases with deep brain stimulation (DBS), a trained clinician must select parameters for each patient by monitoring their symptoms and side-effects in a months-long trial-and-error process, delaying optimal clinical outcomes. Bayesian optimization has been proposed as an efficient method to quickly and automatically search for optimal parameters. However, conventional Bayesian optimization does not account for patient safety and could trigger unwanted or dangerous side-effects.<i>Approach.</i>In this study we develop SAFE-OPT, a Bayesian optimization algorithm designed to learn subject-specific safety constraints to avoid potentially harmful stimulation settings during optimization. We prototype and validate SAFE-OPT using a rodent multielectrode stimulation paradigm which causes subject-specific performance deficits in a spatial memory task. We first use data from an initial cohort of subjects to build a simulation where we design the best SAFE-OPT configuration for safe and accurate searching<i>in silico. Main results.</i>We then deploy both SAFE-OPT and conventional Bayesian optimization without safety constraints in new subjects<i>in vivo</i>, showing that SAFE-OPT can find an optimally high stimulation amplitude that does not harm task performance with comparable sample efficiency to Bayesian optimization and without selecting amplitude values that exceed the subject's safety threshold.<i>Significance.</i>The incorporation of safety constraints will provide a key step for adopting Bayesian optimization in real-world applications of DBS.</p>","PeriodicalId":94096,"journal":{"name":"Journal of neural engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neural engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1741-2552/ad6cf3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objective.To treat neurological and psychiatric diseases with deep brain stimulation (DBS), a trained clinician must select parameters for each patient by monitoring their symptoms and side-effects in a months-long trial-and-error process, delaying optimal clinical outcomes. Bayesian optimization has been proposed as an efficient method to quickly and automatically search for optimal parameters. However, conventional Bayesian optimization does not account for patient safety and could trigger unwanted or dangerous side-effects.Approach.In this study we develop SAFE-OPT, a Bayesian optimization algorithm designed to learn subject-specific safety constraints to avoid potentially harmful stimulation settings during optimization. We prototype and validate SAFE-OPT using a rodent multielectrode stimulation paradigm which causes subject-specific performance deficits in a spatial memory task. We first use data from an initial cohort of subjects to build a simulation where we design the best SAFE-OPT configuration for safe and accurate searchingin silico. Main results.We then deploy both SAFE-OPT and conventional Bayesian optimization without safety constraints in new subjectsin vivo, showing that SAFE-OPT can find an optimally high stimulation amplitude that does not harm task performance with comparable sample efficiency to Bayesian optimization and without selecting amplitude values that exceed the subject's safety threshold.Significance.The incorporation of safety constraints will provide a key step for adopting Bayesian optimization in real-world applications of DBS.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SAFE-OPT:贝叶斯优化算法,用于学习具有安全约束的最佳深部脑刺激参数。
目的: 利用深部脑刺激治疗神经和精神疾病时,训练有素的临床医生必须通过监测每位患者的症状和副作用,在长达数月的试错过程中为其选择参数,从而延误了最佳临床治疗效果。有人提出贝叶斯优化法是一种快速自动搜索最佳参数的有效方法。然而,传统的贝叶斯优化并不考虑患者的安全,可能会引发不必要或危险的副作用:在这项研究中,我们开发了 SAFE-OPT,这是一种贝叶斯优化算法,旨在学习特定受试者的安全约束,以避免在优化过程中出现潜在的有害刺激设置。我们利用啮齿类动物多电极刺激范例对 SAFE-OPT 进行了原型设计和验证,该范例会导致受试者在空间记忆任务中出现特定的表现缺陷。我们首先利用一组初始受试者的数据建立了一个模拟,并在此基础上设计了最佳的 SAFE-OPT 配置,以实现安全、准确的硅搜索。 主要结果: 然后,我们在体内的新受试者身上部署了 SAFE-OPT 和传统的贝叶斯优化,结果表明 SAFE-OPT 可以找到不损害任务性能的最佳高刺激振幅,其样本效率与贝叶斯优化相当,而且不会选择超出受试者安全阈值的振幅值。 结论: 安全约束的加入将为在脑深部刺激的实际应用中采用贝叶斯优化法迈出关键一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Attention demands modulate brain electrical microstates and mental fatigue induced by simulated flight tasks. Temporal attention fusion network with custom loss function for EEG-fNIRS classification. Classification of hand movements from EEG using a FusionNet based LSTM network. Frequency-dependent phase entrainment of cortical cell types during tACS: computational modeling evidence. Patient-specific visual neglect severity estimation for stroke patients with neglect using EEG.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1