{"title":"Using OpenStreetMap, Census, and Survey Data to Predict Interethnic Group Relations in Belgium: A Machine Learning Approach","authors":"Daria Dementeva, Cecil Meeusen, Bart Meuleman","doi":"10.1177/08944393241269098","DOIUrl":null,"url":null,"abstract":"Neighborhoods are important contexts in shaping interethnic group relationships and sites in which these may materialize through everyday routines in shared local spaces. In this paper, we approach neighborhoods as a small-scale set of spaces of encounter, defined as local public or semi-public spaces, where residents of different ethnic backgrounds may meet. Relying on the classical contact and group threat theories, the main assumption is that local spaces of encounter are facets of an intergroup neighborhood context and may shape intergroup relations, defined as perceived ethnic threat and intergroup friendship. Drawing on the georeferenced survey data from the Belgian National Election Study 2020 enriched with spatial features from OpenStreetMap, an innovative big geospatial data source, and census-based neighborhood characteristics, the study employs machine learning algorithms to investigate whether, which, and how neighborhood spaces of encounter can predict perceived ethnic threat and intergroup friendship, while also taking into account traditional local ethnic, socioeconomic, and individual indicators. By using OpenStreetMap to measure spaces of encounter as a novel neighborhood indicator, we develop a fine-grained typology of local spaces that is rooted in urban and intergroup relations research. The results show that for predicting intergroup friendship, the important spaces were educational, functional, public open, and user-selecting spaces, while for predicting threat functional, third, retail, and other spaces stood out prediction-wise. The results also revealed the predictive importance of individual characteristics for intergroup relations, while neighborhood characteristics were not so important, both in absolute and relative terms. We conclude by reflecting on what local spaces might matter and discuss the combination of OpenStreetMap and intergroup relations as a proof of concept and prospects for future research.","PeriodicalId":49509,"journal":{"name":"Social Science Computer Review","volume":"26 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Social Science Computer Review","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.1177/08944393241269098","RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Neighborhoods are important contexts in shaping interethnic group relationships and sites in which these may materialize through everyday routines in shared local spaces. In this paper, we approach neighborhoods as a small-scale set of spaces of encounter, defined as local public or semi-public spaces, where residents of different ethnic backgrounds may meet. Relying on the classical contact and group threat theories, the main assumption is that local spaces of encounter are facets of an intergroup neighborhood context and may shape intergroup relations, defined as perceived ethnic threat and intergroup friendship. Drawing on the georeferenced survey data from the Belgian National Election Study 2020 enriched with spatial features from OpenStreetMap, an innovative big geospatial data source, and census-based neighborhood characteristics, the study employs machine learning algorithms to investigate whether, which, and how neighborhood spaces of encounter can predict perceived ethnic threat and intergroup friendship, while also taking into account traditional local ethnic, socioeconomic, and individual indicators. By using OpenStreetMap to measure spaces of encounter as a novel neighborhood indicator, we develop a fine-grained typology of local spaces that is rooted in urban and intergroup relations research. The results show that for predicting intergroup friendship, the important spaces were educational, functional, public open, and user-selecting spaces, while for predicting threat functional, third, retail, and other spaces stood out prediction-wise. The results also revealed the predictive importance of individual characteristics for intergroup relations, while neighborhood characteristics were not so important, both in absolute and relative terms. We conclude by reflecting on what local spaces might matter and discuss the combination of OpenStreetMap and intergroup relations as a proof of concept and prospects for future research.
期刊介绍:
Unique Scope Social Science Computer Review is an interdisciplinary journal covering social science instructional and research applications of computing, as well as societal impacts of informational technology. Topics included: artificial intelligence, business, computational social science theory, computer-assisted survey research, computer-based qualitative analysis, computer simulation, economic modeling, electronic modeling, electronic publishing, geographic information systems, instrumentation and research tools, public administration, social impacts of computing and telecommunications, software evaluation, world-wide web resources for social scientists. Interdisciplinary Nature Because the Uses and impacts of computing are interdisciplinary, so is Social Science Computer Review. The journal is of direct relevance to scholars and scientists in a wide variety of disciplines. In its pages you''ll find work in the following areas: sociology, anthropology, political science, economics, psychology, computer literacy, computer applications, and methodology.