SlabLU: a two-level sparse direct solver for elliptic PDEs

IF 1.7 3区 数学 Q2 MATHEMATICS, APPLIED Advances in Computational Mathematics Pub Date : 2024-08-09 DOI:10.1007/s10444-024-10176-x
Anna Yesypenko, Per-Gunnar Martinsson
{"title":"SlabLU: a two-level sparse direct solver for elliptic PDEs","authors":"Anna Yesypenko,&nbsp;Per-Gunnar Martinsson","doi":"10.1007/s10444-024-10176-x","DOIUrl":null,"url":null,"abstract":"<div><p>The paper describes a sparse direct solver for the linear systems that arise from the discretization of an elliptic PDE on a two-dimensional domain. The scheme decomposes the domain into thin subdomains, or “slabs” and uses a two-level approach that is designed with parallelization in mind. The scheme takes advantage of <span>\\(\\varvec{\\mathcal {H}}^\\textbf{2}\\)</span>-matrix structure emerging during factorization and utilizes randomized algorithms to efficiently recover this structure. As opposed to multi-level nested dissection schemes that incorporate the use of <span>\\(\\varvec{\\mathcal {H}}\\)</span> or <span>\\(\\varvec{\\mathcal {H}}^\\textbf{2}\\)</span> matrices for a hierarchy of front sizes, SlabLU is a two-level scheme which only uses <span>\\(\\varvec{\\mathcal {H}}^\\textbf{2}\\)</span>-matrix algebra for fronts of roughly the same size. The simplicity allows the scheme to be easily tuned for performance on modern architectures and GPUs. The solver described is compatible with a range of different local discretizations, and numerical experiments demonstrate its performance for regular discretizations of rectangular and curved geometries. The technique becomes particularly efficient when combined with very high-order accurate multidomain spectral collocation schemes. With this discretization, a Helmholtz problem on a domain of size <span>\\(\\textbf{1000} \\varvec{\\lambda } \\times \\textbf{1000} \\varvec{\\lambda }\\)</span> (for which <span>\\(\\varvec{N}~\\mathbf {=100} \\textbf{M}\\)</span>) is solved in 15 min to 6 correct digits on a high-powered desktop with GPU acceleration.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10444-024-10176-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The paper describes a sparse direct solver for the linear systems that arise from the discretization of an elliptic PDE on a two-dimensional domain. The scheme decomposes the domain into thin subdomains, or “slabs” and uses a two-level approach that is designed with parallelization in mind. The scheme takes advantage of \(\varvec{\mathcal {H}}^\textbf{2}\)-matrix structure emerging during factorization and utilizes randomized algorithms to efficiently recover this structure. As opposed to multi-level nested dissection schemes that incorporate the use of \(\varvec{\mathcal {H}}\) or \(\varvec{\mathcal {H}}^\textbf{2}\) matrices for a hierarchy of front sizes, SlabLU is a two-level scheme which only uses \(\varvec{\mathcal {H}}^\textbf{2}\)-matrix algebra for fronts of roughly the same size. The simplicity allows the scheme to be easily tuned for performance on modern architectures and GPUs. The solver described is compatible with a range of different local discretizations, and numerical experiments demonstrate its performance for regular discretizations of rectangular and curved geometries. The technique becomes particularly efficient when combined with very high-order accurate multidomain spectral collocation schemes. With this discretization, a Helmholtz problem on a domain of size \(\textbf{1000} \varvec{\lambda } \times \textbf{1000} \varvec{\lambda }\) (for which \(\varvec{N}~\mathbf {=100} \textbf{M}\)) is solved in 15 min to 6 correct digits on a high-powered desktop with GPU acceleration.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SlabLU:椭圆 PDE 的两级稀疏直接求解器
本文介绍了一种稀疏直接求解器,用于求解二维域上椭圆 PDE 离散化产生的线性系统。该方案将域分解成薄的子域或 "板",并使用一种考虑到并行化的两级方法。该方案利用了因式分解过程中出现的矩阵结构,并利用随机算法高效地恢复这一结构。与多层嵌套剖分方案不同的是,SlabLU 是一种两层方案,它只使用 \(\varvec\mathcal {H}}^\textbf{2}\) 矩阵代数来处理大小大致相同的前沿。这种简单性使得该方案可以很容易地在现代架构和 GPU 上调整性能。所述求解器与一系列不同的局部离散法兼容,数值实验证明了它在矩形和曲线几何的规则离散法中的性能。当该技术与非常高阶精确的多域光谱配位方案相结合时,其效率变得尤为突出。使用这种离散化方法,一个大小为 \(\textbf{1000} \varvec{\lambda } \times \textbf{1000} \varvec{\lambda }\) (其中 \(\varvec{N}~\mathbf {=100} \textbf{M}\) 的域上的亥姆霍兹问题可在带 GPU 加速的大功率台式机上在 15 分钟内求解到 6 位正确数字。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.00
自引率
5.90%
发文量
68
审稿时长
3 months
期刊介绍: Advances in Computational Mathematics publishes high quality, accessible and original articles at the forefront of computational and applied mathematics, with a clear potential for impact across the sciences. The journal emphasizes three core areas: approximation theory and computational geometry; numerical analysis, modelling and simulation; imaging, signal processing and data analysis. This journal welcomes papers that are accessible to a broad audience in the mathematical sciences and that show either an advance in computational methodology or a novel scientific application area, or both. Methods papers should rely on rigorous analysis and/or convincing numerical studies.
期刊最新文献
Higher-order iterative decoupling for poroelasticity Adaptive quarklet tree approximation Efficient computation of the sinc matrix function for the integration of second-order differential equations Sobolev regularity of bivariate isogeometric finite element spaces in case of a geometry map with degenerate corner An optimal ansatz space for moving least squares approximation on spheres
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1