Deep learning versus manual morphology-based embryo selection in IVF: a randomized, double-blind noninferiority trial

IF 58.7 1区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Nature Medicine Pub Date : 2024-08-09 DOI:10.1038/s41591-024-03166-5
Peter J. Illingworth, Christos Venetis, David K. Gardner, Scott M. Nelson, Jørgen Berntsen, Mark G. Larman, Franca Agresta, Saran Ahitan, Aisling Ahlström, Fleur Cattrall, Simon Cooke, Kristy Demmers, Anette Gabrielsen, Johnny Hindkjær, Rebecca L. Kelley, Charlotte Knight, Lisa Lee, Robert Lahoud, Manveen Mangat, Hannah Park, Anthony Price, Geoffrey Trew, Bettina Troest, Anna Vincent, Susanne Wennerström, Lyndsey Zujovic, Thorir Hardarson
{"title":"Deep learning versus manual morphology-based embryo selection in IVF: a randomized, double-blind noninferiority trial","authors":"Peter J. Illingworth, Christos Venetis, David K. Gardner, Scott M. Nelson, Jørgen Berntsen, Mark G. Larman, Franca Agresta, Saran Ahitan, Aisling Ahlström, Fleur Cattrall, Simon Cooke, Kristy Demmers, Anette Gabrielsen, Johnny Hindkjær, Rebecca L. Kelley, Charlotte Knight, Lisa Lee, Robert Lahoud, Manveen Mangat, Hannah Park, Anthony Price, Geoffrey Trew, Bettina Troest, Anna Vincent, Susanne Wennerström, Lyndsey Zujovic, Thorir Hardarson","doi":"10.1038/s41591-024-03166-5","DOIUrl":null,"url":null,"abstract":"To assess the value of deep learning in selecting the optimal embryo for in vitro fertilization, a multicenter, randomized, double-blind, noninferiority parallel-group trial was conducted across 14 in vitro fertilization clinics in Australia and Europe. Women under 42 years of age with at least two early-stage blastocysts on day 5 were randomized to either the control arm, using standard morphological assessment, or the study arm, employing a deep learning algorithm, intelligent Data Analysis Score (iDAScore), for embryo selection. The primary endpoint was a clinical pregnancy rate with a noninferiority margin of 5%. The trial included 1,066 patients (533 in the iDAScore group and 533 in the morphology group). The iDAScore group exhibited a clinical pregnancy rate of 46.5% (248 of 533 patients), compared to 48.2% (257 of 533 patients) in the morphology arm (risk difference −1.7%; 95% confidence interval −7.7, 4.3; P = 0.62). This study was not able to demonstrate noninferiority of deep learning for clinical pregnancy rate when compared to standard morphology and a predefined prioritization scheme. Australian New Zealand Clinical Trials Registry (ANZCTR) registration: 379161 . A randomized controlled trial evaluating the selection of a single blastocyst for transfer by deep learning did not demonstrate noninferiority in clinical pregnancy rates when compared to trained embryologists using standard morphology criteria.","PeriodicalId":19037,"journal":{"name":"Nature Medicine","volume":"30 11","pages":"3114-3120"},"PeriodicalIF":58.7000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41591-024-03166-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Medicine","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41591-024-03166-5","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

To assess the value of deep learning in selecting the optimal embryo for in vitro fertilization, a multicenter, randomized, double-blind, noninferiority parallel-group trial was conducted across 14 in vitro fertilization clinics in Australia and Europe. Women under 42 years of age with at least two early-stage blastocysts on day 5 were randomized to either the control arm, using standard morphological assessment, or the study arm, employing a deep learning algorithm, intelligent Data Analysis Score (iDAScore), for embryo selection. The primary endpoint was a clinical pregnancy rate with a noninferiority margin of 5%. The trial included 1,066 patients (533 in the iDAScore group and 533 in the morphology group). The iDAScore group exhibited a clinical pregnancy rate of 46.5% (248 of 533 patients), compared to 48.2% (257 of 533 patients) in the morphology arm (risk difference −1.7%; 95% confidence interval −7.7, 4.3; P = 0.62). This study was not able to demonstrate noninferiority of deep learning for clinical pregnancy rate when compared to standard morphology and a predefined prioritization scheme. Australian New Zealand Clinical Trials Registry (ANZCTR) registration: 379161 . A randomized controlled trial evaluating the selection of a single blastocyst for transfer by deep learning did not demonstrate noninferiority in clinical pregnancy rates when compared to trained embryologists using standard morphology criteria.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
试管婴儿中深度学习与人工形态学胚胎选择:随机双盲非劣效性试验
为了评估深度学习在选择体外受精最佳胚胎方面的价值,澳大利亚和欧洲的 14 家体外受精诊所开展了一项多中心、随机、双盲、非劣效平行组试验。第 5 天至少有两个早期囊胚的 42 岁以下女性被随机分配到对照组(采用标准形态学评估)或研究组(采用深度学习算法智能数据分析评分(iDAScore)进行胚胎选择)。主要终点是临床妊娠率,非劣效度为 5%。该试验包括 1066 名患者(iDAScore 组 533 人,形态学组 533 人)。iDAScore组的临床妊娠率为46.5%(533名患者中的248名),而形态学组为48.2%(533名患者中的257名)(风险差异-1.7%;95%置信区间-7.7,4.3;P = 0.62)。与标准形态学和预定义的优先排序方案相比,该研究无法证明深度学习在临床妊娠率方面的非劣效性。澳大利亚-新西兰临床试验注册中心(ANZCTR)注册:379161.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Medicine
Nature Medicine 医学-生化与分子生物学
CiteScore
100.90
自引率
0.70%
发文量
525
审稿时长
1 months
期刊介绍: Nature Medicine is a monthly journal publishing original peer-reviewed research in all areas of medicine. The publication focuses on originality, timeliness, interdisciplinary interest, and the impact on improving human health. In addition to research articles, Nature Medicine also publishes commissioned content such as News, Reviews, and Perspectives. This content aims to provide context for the latest advances in translational and clinical research, reaching a wide audience of M.D. and Ph.D. readers. All editorial decisions for the journal are made by a team of full-time professional editors. Nature Medicine consider all types of clinical research, including: -Case-reports and small case series -Clinical trials, whether phase 1, 2, 3 or 4 -Observational studies -Meta-analyses -Biomarker studies -Public and global health studies Nature Medicine is also committed to facilitating communication between translational and clinical researchers. As such, we consider “hybrid” studies with preclinical and translational findings reported alongside data from clinical studies.
期刊最新文献
Author Correction: Subclassification of obesity for precision prediction of cardiometabolic diseases Limiting babies’ sugar intake protects them against chronic diseases Editorial Expression of Concern: Tumor-selective action of HDAC inhibitors involves TRAIL induction in acute myeloid leukemia cells High-resolution spatial multiomic census of the human placenta An organotypic atlas of human vascular cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1