The A-Ni chemical bond in AIIINiSb (AIII=Sc, Y, Er) half-Heusler materials triggers the formation of anomalous vacancy defects

IF 10 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Today Physics Pub Date : 2024-08-01 DOI:10.1016/j.mtphys.2024.101531
Qiyong Chen, Lefei Ma, Jiong Yang, Lili Xi
{"title":"The A-Ni chemical bond in AIIINiSb (AIII=Sc, Y, Er) half-Heusler materials triggers the formation of anomalous vacancy defects","authors":"Qiyong Chen,&nbsp;Lefei Ma,&nbsp;Jiong Yang,&nbsp;Lili Xi","doi":"10.1016/j.mtphys.2024.101531","DOIUrl":null,"url":null,"abstract":"<div><p>Defects exert a profound influence on thermoelectric materials by altering electronic band structures and significantly impacting their performance. Despite being a potentially promising thermoelectric material, the mechanism behind defect formation in half-Heusler (HH) compounds ABX remains unclear, impeding the enhancement of their thermoelectric properties. In this study, we investigated the intrinsic defect formation energies for A<sup>Ⅲ</sup>NiSb (A<sup>Ⅲ</sup> = Sc, Y, Er) and other 9 HH compounds, namely A<sup>Ⅳ</sup>NiSn (A<sup>Ⅳ</sup> = Ti, Zr, Hf), A<sup>Ⅴ</sup>FeSb (A<sup>Ⅴ</sup> = V, Nb, Ta), and A<sup>Ⅳ</sup>CoSb (A<sup>Ⅳ</sup> = Ti, Zr, Hf), using first-principles calculations and thermodynamics. The results reveal that A<sup>Ⅲ</sup>NiSb (A<sup>Ⅲ</sup> = Sc, Y, Er) exhibits anomalous B (Ni) vacancy defects, with their formation energies being significantly lower than those of the corresponding B vacancy defects in the other 9 HH compounds. This anomaly can be attributed to the strength of the A-B bonds, where a decrease in bond strength leads to a decrease in the formation energy of B vacancies. This approach of exploring the influence of interatomic bond strength on defect formation is not only insightful for HH compounds but also holds potential applications in defect studies across various materials, offering a broader perspective on the fundamental mechanisms governing defect formation and stability.</p></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"46 ","pages":"Article 101531"},"PeriodicalIF":10.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542529324002074","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Defects exert a profound influence on thermoelectric materials by altering electronic band structures and significantly impacting their performance. Despite being a potentially promising thermoelectric material, the mechanism behind defect formation in half-Heusler (HH) compounds ABX remains unclear, impeding the enhancement of their thermoelectric properties. In this study, we investigated the intrinsic defect formation energies for ANiSb (A = Sc, Y, Er) and other 9 HH compounds, namely ANiSn (A = Ti, Zr, Hf), AFeSb (A = V, Nb, Ta), and ACoSb (A = Ti, Zr, Hf), using first-principles calculations and thermodynamics. The results reveal that ANiSb (A = Sc, Y, Er) exhibits anomalous B (Ni) vacancy defects, with their formation energies being significantly lower than those of the corresponding B vacancy defects in the other 9 HH compounds. This anomaly can be attributed to the strength of the A-B bonds, where a decrease in bond strength leads to a decrease in the formation energy of B vacancies. This approach of exploring the influence of interatomic bond strength on defect formation is not only insightful for HH compounds but also holds potential applications in defect studies across various materials, offering a broader perspective on the fundamental mechanisms governing defect formation and stability.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AIIINiSb(AIII=Sc、Y、Er)半休斯勒材料中的 A-Ni 化学键引发异常空位缺陷的形成
缺陷通过改变电子能带结构对热电材料产生深远影响,并显著影响其性能。尽管半海斯勒(HH)化合物 ABX 是一种很有潜力的热电材料,但其缺陷形成的机理仍不清楚,这阻碍了其热电性能的提高。在本研究中,我们利用第一原理计算和热力学研究了 ANiSb(A = Sc、Y、Er)和其他 9 种 HH 化合物,即 ANiSn(A = Ti、Zr、Hf)、AFeSb(A = V、Nb、Ta)和 ACoSb(A = Ti、Zr、Hf)的本征缺陷形成能。结果发现,ANiSb(A = Sc、Y、Er)表现出异常的 B(Ni)空位缺陷,其形成能明显低于其他 9 种 HH 化合物中相应的 B 空位缺陷。这种反常现象可归因于 A-B 键的强度,键强度的降低会导致 B 空位形成能的降低。这种探索原子间键强度对缺陷形成的影响的方法不仅对 HH 化合物很有启发,而且在各种材料的缺陷研究中也具有潜在的应用价值,为研究缺陷形成和稳定性的基本机制提供了更广阔的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Today Physics
Materials Today Physics Materials Science-General Materials Science
CiteScore
14.00
自引率
7.80%
发文量
284
审稿时长
15 days
期刊介绍: Materials Today Physics is a multi-disciplinary journal focused on the physics of materials, encompassing both the physical properties and materials synthesis. Operating at the interface of physics and materials science, this journal covers one of the largest and most dynamic fields within physical science. The forefront research in materials physics is driving advancements in new materials, uncovering new physics, and fostering novel applications at an unprecedented pace.
期刊最新文献
Interface Engineering for Minimizing Trapped Charge Density in β-Ga₂O₃ Schottky Barrier Diodes for High-Performance Power Devices Large magnetocaloric effect near liquid hydrogen temperatures in Er1-xTmxGa materials Ultra-soft, foldable, wearable piezoelectric sensor based on the aligned BaTiO3 nanoparticles Mist CVD technology for gallium oxide deposition: A review Atomic Imprint Crystallization: Externally-Templated Crystallization of Amorphous Silicon
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1