首页 > 最新文献

Materials Today Physics最新文献

英文 中文
Corrigendum to ‘Excellent energy-storage performance in BNT-BT lead-free ceramics through optimized electromechanical breakdown’ [Materials Today Physics 47(2024) 101545] 通过优化机电击穿实现 BNT-BT 无铅陶瓷的卓越储能性能"[《今日物理学材料》47(2024) 101545] 更正
IF 11.5 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-11-07 DOI: 10.1016/j.mtphys.2024.101587
Liang Wang, Wenjun Cao, Cen Liang, Changyuan Wang, Hanyu Zhao, Chunchang Wang
No Abstract
无摘要
{"title":"Corrigendum to ‘Excellent energy-storage performance in BNT-BT lead-free ceramics through optimized electromechanical breakdown’ [Materials Today Physics 47(2024) 101545]","authors":"Liang Wang, Wenjun Cao, Cen Liang, Changyuan Wang, Hanyu Zhao, Chunchang Wang","doi":"10.1016/j.mtphys.2024.101587","DOIUrl":"https://doi.org/10.1016/j.mtphys.2024.101587","url":null,"abstract":"No Abstract","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":null,"pages":null},"PeriodicalIF":11.5,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142594297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Novel NaNbO3-based, ferroelectric ceramics with excellent polarization and electric potential for antibacterial applications 新型 NaNbO3 基铁电陶瓷具有优异的极化和电势,可用于抗菌应用
IF 11.5 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-11-06 DOI: 10.1016/j.mtphys.2024.101583
Lei Zhang, Yongqiang Yang, Yongping Pu, Min Chen, Ning Xu, Xia Wu
Low surface electric potential (<1V) limits the large-scale commercial application of ferroelectric antibacterial ceramics. We propose a strategy based on charge-balancing doping to enhance polarization and potential in NaNbO3(NN)-based ceramics for disinfection application. The Mg2+ modified NN showed a superior bactericidal effect greater than 80% for 1.5 h and 99.8% for 3 h without heating or ultrasonication, which is superior to other published works. This is mainly due to its excellent surface electric potential of 1.72 V and defect-related discharge current of 141.9 pA compared to NN and Ca2+ modified NN. Ferroelectric properties demonstrated that NN-Mg possesses a lower EC of ∼40 kV/cm and a higher Pr of ∼32 μC/cm2. Furthermore, the combination of XRD, Raman shift, PFM, and permittivity testing suggests that the smaller domain and enhanced ferroelectric properties in NN-Mg originated from amphoteric doping. Finally, simulation results of the electric field distribution indicated that NN-Mg had a stronger attraction or repulsion to bacteria with negatively charged surfaces.
低表面电势(1V)限制了铁电抗菌陶瓷的大规模商业应用。我们提出了一种基于电荷平衡掺杂的策略,以增强 NaNbO3(NN)基陶瓷的极化和电位,从而实现消毒应用。经 Mg2+ 修饰的 NN 在不加热或超声处理的情况下,1.5 小时内的杀菌效果大于 80%,3 小时内的杀菌效果大于 99.8%,优于其他已发表的研究成果。这主要是因为与 NN 和 Ca2+ 修饰的 NN 相比,其表面电动势为 1.72 V,缺陷相关放电电流为 141.9 pA。铁电特性表明,NN-Mg 具有较低的 EC(40 kV/cm)和较高的 Pr(32 μC/cm2)。此外,XRD、拉曼偏移、PFM 和介电常数测试的综合结果表明,NN-Mg 中更小的畴和更强的铁电特性源于两性掺杂。最后,电场分布的模拟结果表明,NN-Mg 对表面带负电荷的细菌具有更强的吸引力或排斥力。
{"title":"Novel NaNbO3-based, ferroelectric ceramics with excellent polarization and electric potential for antibacterial applications","authors":"Lei Zhang, Yongqiang Yang, Yongping Pu, Min Chen, Ning Xu, Xia Wu","doi":"10.1016/j.mtphys.2024.101583","DOIUrl":"https://doi.org/10.1016/j.mtphys.2024.101583","url":null,"abstract":"Low surface electric potential (&lt;1V) limits the large-scale commercial application of ferroelectric antibacterial ceramics. We propose a strategy based on charge-balancing doping to enhance polarization and potential in NaNbO<sub>3</sub>(NN)-based ceramics for disinfection application. The Mg<sup>2+</sup> modified NN showed a superior bactericidal effect greater than 80% for 1.5 h and 99.8% for 3 h without heating or ultrasonication, which is superior to other published works. This is mainly due to its excellent surface electric potential of 1.72 V and defect-related discharge current of 141.9 pA compared to NN and Ca<sup>2+</sup> modified NN. Ferroelectric properties demonstrated that NN-Mg possesses a lower <em>E</em><sub>C</sub> of ∼40 kV/cm and a higher <em>P</em><sub>r</sub> of ∼32 μC/cm<sup>2</sup>. Furthermore, the combination of XRD, Raman shift, PFM, and permittivity testing suggests that the smaller domain and enhanced ferroelectric properties in NN-Mg originated from amphoteric doping. Finally, simulation results of the electric field distribution indicated that NN-Mg had a stronger attraction or repulsion to bacteria with negatively charged surfaces.","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":null,"pages":null},"PeriodicalIF":11.5,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142594304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiple scattering effect of spherical LaPO4 enhanced broadband emissivity for heat dissipation of electronic devices 球形 LaPO4 的多重散射效应增强了电子设备散热的宽带发射率
IF 11.5 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-11-06 DOI: 10.1016/j.mtphys.2024.101584
Chuanqing Sun, Mingrui Liu, Wei Song, Chenxi Bao, Wanting Zhu, Wenyu Zhao, Qingjie Zhang
High-performance infrared radiation materials with excellent broadband emissivity, remarkable thermal stability, and scalable fabrication processes play a vital role in heat dissipation and energy-saving applications. However, current strategies of broadband emissivity enhancement remain inadequate. This study investigates the impact of LaPO4 morphology on the infrared radiation properties of composite coating. Three distinct morphologies (sphere, rod and mesh sheet) of LaPO4 are explored using a simulation-aided method. The composite coating filled with large-sized spherical LaPO4 particles with low diffuse reflection, exhibits a significantly enhanced infrared radiation capability, resulting in a broadband emissivity of 95.6%. Furthermore, the composite coating achieves a large temperature reduction of 6.2 °C and high cooling efficiency of 11.9% when subjected to a heating power of 2250 W/m2. This work provides an innovative strategy for regulating material emissivity through morphology control, benefiting advancements low-cost radiation heat transfer technology.
高性能红外辐射材料具有出色的宽带发射率、显著的热稳定性和可扩展的制造工艺,在散热和节能应用中发挥着重要作用。然而,目前的宽带发射率增强策略仍显不足。本研究探讨了 LaPO4 形态对复合涂层红外辐射特性的影响。采用模拟辅助方法探讨了 LaPO4 的三种不同形态(球状、棒状和网状片状)。填充了大尺寸球形低漫反射 LaPO4 颗粒的复合涂层的红外辐射能力显著增强,宽带发射率达到 95.6%。此外,当加热功率为 2250 W/m2 时,复合涂层的温度大幅降低了 6.2 °C,冷却效率高达 11.9%。这项工作提供了一种通过形态控制调节材料发射率的创新策略,有利于低成本辐射传热技术的发展。
{"title":"Multiple scattering effect of spherical LaPO4 enhanced broadband emissivity for heat dissipation of electronic devices","authors":"Chuanqing Sun, Mingrui Liu, Wei Song, Chenxi Bao, Wanting Zhu, Wenyu Zhao, Qingjie Zhang","doi":"10.1016/j.mtphys.2024.101584","DOIUrl":"https://doi.org/10.1016/j.mtphys.2024.101584","url":null,"abstract":"High-performance infrared radiation materials with excellent broadband emissivity, remarkable thermal stability, and scalable fabrication processes play a vital role in heat dissipation and energy-saving applications. However, current strategies of broadband emissivity enhancement remain inadequate. This study investigates the impact of LaPO<sub>4</sub> morphology on the infrared radiation properties of composite coating. Three distinct morphologies (sphere, rod and mesh sheet) of LaPO<sub>4</sub> are explored using a simulation-aided method. The composite coating filled with large-sized spherical LaPO<sub>4</sub> particles with low diffuse reflection, exhibits a significantly enhanced infrared radiation capability, resulting in a broadband emissivity of 95.6%. Furthermore, the composite coating achieves a large temperature reduction of 6.2 °C and high cooling efficiency of 11.9% when subjected to a heating power of 2250 W/m<sup>2</sup>. This work provides an innovative strategy for regulating material emissivity through morphology control, benefiting advancements low-cost radiation heat transfer technology.","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":null,"pages":null},"PeriodicalIF":11.5,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142588393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Significant Magnon Contribution to Heat Transfer in Nickel Nanowires 磁子对镍纳米线传热的重要贡献
IF 11.5 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-11-06 DOI: 10.1016/j.mtphys.2024.101585
Wei-Tsu Peng, Jiun-Hung Yi, Chih-Cheng Cheng, Kuan-Ju Yu, Tien-Kan Chung, Ming-Chang Lu
Magnons, quantized spin waves arising from collective excitations of spins, are typically considered negligible contributors to heat transfer. However, recent studies on low-dimensional magnetic materials have challenged this notion, revealing significant magnon-mediated heat transport. The underlying physics behind this phenomenon, however, remains poorly understood. In this study, we observed a significant reduction in heat transfer in nickel nanowires under the influence of a magnetic field. Our theoretical model revealed a substantial magnon contribution of up to 30% to nanowire heat transfer. The reduction in heat transfer under a magnetic field stemmed from a drastic decrease in the magnon mean free path (MFP). This decrease in MFP was primarily attributed to suppressing long wavelength magnons with a longer MFP. Our findings provide deeper insights into heat transfer mechanisms in nanoscale ferromagnetic materials and offer valuable guidance for the design of future spintronic devices.
磁子是由自旋集体激发产生的量子化自旋波,通常被认为对热传递的贡献可以忽略不计。然而,最近对低维磁性材料的研究对这一观点提出了挑战,揭示了磁子介导热传递的重要作用。然而,人们对这一现象背后的基本物理学原理仍然知之甚少。在这项研究中,我们观察到镍纳米线在磁场影响下的热传递显著减少。我们的理论模型显示,磁子对纳米线传热的贡献率高达 30%。磁场下传热的减少源于磁子平均自由路径(MFP)的急剧下降。MFP的降低主要归因于抑制了具有较长MFP的长波长磁子。我们的研究结果使人们对纳米级铁磁材料的传热机制有了更深入的了解,并为未来自旋电子器件的设计提供了宝贵的指导。
{"title":"Significant Magnon Contribution to Heat Transfer in Nickel Nanowires","authors":"Wei-Tsu Peng, Jiun-Hung Yi, Chih-Cheng Cheng, Kuan-Ju Yu, Tien-Kan Chung, Ming-Chang Lu","doi":"10.1016/j.mtphys.2024.101585","DOIUrl":"https://doi.org/10.1016/j.mtphys.2024.101585","url":null,"abstract":"Magnons, quantized spin waves arising from collective excitations of spins, are typically considered negligible contributors to heat transfer. However, recent studies on low-dimensional magnetic materials have challenged this notion, revealing significant magnon-mediated heat transport. The underlying physics behind this phenomenon, however, remains poorly understood. In this study, we observed a significant reduction in heat transfer in nickel nanowires under the influence of a magnetic field. Our theoretical model revealed a substantial magnon contribution of up to 30% to nanowire heat transfer. The reduction in heat transfer under a magnetic field stemmed from a drastic decrease in the magnon mean free path (MFP). This decrease in MFP was primarily attributed to suppressing long wavelength magnons with a longer MFP. Our findings provide deeper insights into heat transfer mechanisms in nanoscale ferromagnetic materials and offer valuable guidance for the design of future spintronic devices.","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":null,"pages":null},"PeriodicalIF":11.5,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142588418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Infinitely Rugged Intra-Cage Potential Energy Landscape in Metallic Glasses Caused by Many-Body Interaction 多体相互作用导致金属玻璃中无限坚固的笼内势能景观
IF 11.5 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-11-06 DOI: 10.1016/j.mtphys.2024.101582
Haoyu Li, Hongyi Xiao, Takeshi Egami, Yue Fan
The absence of translational symmetry in glassy materials poses a significant challenge in establishing effective structure-property relationships in real space. Consequently, the potential energy landscape (PEL) in phase space is widely utilized to comprehend the complex phenomena in glasses. The classical PEL features a two-scale profile comprising mega-basins and sub-basins, corresponding to α-relaxations (e.g. glass transition) and β-relaxations (e.g. local cage-breaking atomic rearrangements), respectively. Recent studies, however, reveal that sub-basins are not smooth and contain finer structures, the origins of which remain elusive. Here we probe the smoothness of sub-basin bottoms in glasses’ PEL by introducing small intra-cage cyclic loading and then measuring the net changes in atomic-level stresses. Compared to glasses with pair interaction, glasses with many-body interaction exhibit orders-of-magnitude larger and loading dependent stress changes even before the first cage-breaking event takes place, which reflect much more feature-rich sub-basins. We further demonstrate this stark contrast stems from the spatial distribution of individual atom’s constraining force field. Specifically, at vanishing perturbations, many-body interactions disrupt the positive-definite synchrony in energy variations of the perturbed atom and the whole system, causing inherently less confined atomic responses and infinitely rugged sub-basins. The implications of these findings for the selective addition or removal of fine structures in the PEL and the subsequent tuning of glassy materials’ responses to external stimuli are also explored.
玻璃材料不存在平移对称性,这给在实际空间中建立有效的结构-性能关系带来了巨大挑战。因此,相空间势能图(PEL)被广泛用于理解玻璃中的复杂现象。经典的势能图具有双尺度剖面,包括巨盆地和子盆地,分别对应于α-松弛(如玻璃转变)和β-松弛(如局部破笼原子重排)。然而,最近的研究发现,亚盆地并不光滑,它包含更精细的结构,而这些结构的起源仍然难以捉摸。在此,我们通过引入小的笼内循环加载,然后测量原子级应力的净变化,来探究玻璃 PEL 中子盆地底部的平滑性。与具有配对相互作用的玻璃相比,具有多体相互作用的玻璃甚至在第一次破笼事件发生之前就表现出了数量级更大且与加载相关的应力变化,这反映了特征更为丰富的子盆地。我们进一步证明,这种鲜明对比源于单个原子约束力场的空间分布。具体来说,在扰动消失时,多体相互作用会破坏受扰动原子和整个系统能量变化的正无限同步性,从而导致原子反应的内在约束性降低和子盆地的无限崎岖。此外,还探讨了这些发现对选择性添加或去除 PEL 中的精细结构以及随后调整玻璃材料对外部刺激的反应的影响。
{"title":"Infinitely Rugged Intra-Cage Potential Energy Landscape in Metallic Glasses Caused by Many-Body Interaction","authors":"Haoyu Li, Hongyi Xiao, Takeshi Egami, Yue Fan","doi":"10.1016/j.mtphys.2024.101582","DOIUrl":"https://doi.org/10.1016/j.mtphys.2024.101582","url":null,"abstract":"The absence of translational symmetry in glassy materials poses a significant challenge in establishing effective structure-property relationships in real space. Consequently, the potential energy landscape (PEL) in phase space is widely utilized to comprehend the complex phenomena in glasses. The classical PEL features a two-scale profile comprising mega-basins and sub-basins, corresponding to α-relaxations (<em>e.g.</em> glass transition) and β-relaxations (<em>e.g.</em> local cage-breaking atomic rearrangements), respectively. Recent studies, however, reveal that sub-basins are not smooth and contain finer structures, the origins of which remain elusive. Here we probe the smoothness of sub-basin bottoms in glasses’ PEL by introducing small intra-cage cyclic loading and then measuring the net changes in atomic-level stresses. Compared to glasses with pair interaction, glasses with many-body interaction exhibit orders-of-magnitude larger and loading dependent stress changes even before the first cage-breaking event takes place, which reflect much more feature-rich sub-basins. We further demonstrate this stark contrast stems from the spatial distribution of individual atom’s constraining force field. Specifically, at vanishing perturbations, many-body interactions disrupt the positive-definite synchrony in energy variations of the perturbed atom and the whole system, causing inherently less confined atomic responses and infinitely rugged sub-basins. The implications of these findings for the selective addition or removal of fine structures in the PEL and the subsequent tuning of glassy materials’ responses to external stimuli are also explored.","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":null,"pages":null},"PeriodicalIF":11.5,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142594296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reversing band bending at grain boundaries enables high-efficiency Cu2ZnSn(S,Se)4 solar cells 扭转晶界带弯曲实现高效 Cu2ZnSn(S,Se)4 太阳能电池
IF 1 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-11-01 DOI: 10.1016/j.mtphys.2024.101580
Kesterite solar cells show great potential for sustainable photovoltaic technology, attributed to their excellent semiconductor properties and earth abundant composition. However, undesirable band bending at the grain boundaries (GBs) in Cu2ZnSn(S,Se)4 (CZTSSe) films induces serious carrier recombination because of inhomogeneous distribution of S and Se in the grain interiors (GIs) and at GBs, which results in large open-circuit voltage deficit and overall poor performance of CZTSSe solar cells. Here, a robust hydrothermal sulfurization design has successfully inverted the band bending at the GBs, with advanced cathodoluminescence measurement confirming the transition of carrier collection pathways from the GBs to the GIs, thereby achieving efficient carrier collection within the GIs. Simultaneously, this design has effectively passivated the non-radiative recombination in the GIs, smoothing the way for carrier collection. Ultimately, a 13.7 % efficiency CZTSSe solar cell with 44 % improvement is realized by this process. This study discloses that reversing the band bending at GBs is practical to tailor the carrier collection, and thus pave the pathway for high-efficient photoelectronic devices.
钾长石太阳能电池因其优异的半导体特性和丰富的地球成分而在可持续光伏技术方面展现出巨大潜力。然而,在 Cu2ZnSn(S,Se)4(CZTSSe)薄膜的晶界(GBs)处,由于 S 和 Se 在晶粒内部(GIs)和晶界(GBs)处的分布不均匀,不理想的带弯曲诱发了严重的载流子重组,从而导致 CZTSSe 太阳能电池的开路电压严重不足,整体性能低下。在这里,一种稳健的水热硫化设计成功地逆转了 GBs 的带弯曲,先进的阴极发光测量证实了载流子收集途径从 GBs 到 GIs 的转变,从而实现了 GIs 内载流子的高效收集。同时,这种设计还有效地钝化了 GIs 中的非辐射重组,为载流子收集铺平了道路。通过这一工艺,最终实现了效率为 13.7% 的 CZTSSe 太阳能电池,并提高了 44%。这项研究揭示了在 GB 处反转带弯曲来定制载流子收集是切实可行的,从而为高效光电子器件铺平了道路。
{"title":"Reversing band bending at grain boundaries enables high-efficiency Cu2ZnSn(S,Se)4 solar cells","authors":"","doi":"10.1016/j.mtphys.2024.101580","DOIUrl":"10.1016/j.mtphys.2024.101580","url":null,"abstract":"<div><div>Kesterite solar cells show great potential for sustainable photovoltaic technology, attributed to their excellent semiconductor properties and earth abundant composition. However, undesirable band bending at the grain boundaries (GBs) in Cu<sub>2</sub>ZnSn(S,Se)<sub>4</sub> (CZTSSe) films induces serious carrier recombination because of inhomogeneous distribution of S and Se in the grain interiors (GIs) and at GBs, which results in large open-circuit voltage deficit and overall poor performance of CZTSSe solar cells. Here, a robust hydrothermal sulfurization design has successfully inverted the band bending at the GBs, with advanced cathodoluminescence measurement confirming the transition of carrier collection pathways from the GBs to the GIs, thereby achieving efficient carrier collection within the GIs. Simultaneously, this design has effectively passivated the non-radiative recombination in the GIs, smoothing the way for carrier collection. Ultimately, a 13.7 % efficiency CZTSSe solar cell with 44 % improvement is realized by this process. This study discloses that reversing the band bending at GBs is practical to tailor the carrier collection, and thus pave the pathway for high-efficient photoelectronic devices.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":null,"pages":null},"PeriodicalIF":10.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142541509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synergistic effect of indium doping on thermoelectric performance of cubic GeTe-based thin films 掺杂铟对立方 GeTe 基薄膜热电性能的协同效应
IF 11.5 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-11-01 DOI: 10.1016/j.mtphys.2024.101581
Suman Abbas, Bhawna Jarwal, Thi-Thong Ho, Suneesh Meledath Valiyaveettil, Cheng-Rong Hsing, Ta-Lei Chou, Ching-Ming Wei, Li-Chyong Chen, Kuei-Hsien Chen
Germanium Telluride (GeTe) has been widely explored as a promising lead-free thermoelectric material in its rhombohedral and cubic phases. However, the structural transition between these two phases at ∼700 K causes an abrupt change of thermal expansion coefficient, challenging its broader practical applications. Also, as characterized by multi-valence bands and strong anharmonic interaction, the high-temperature cubic phase exhibits a higher power factor, lower thermal conductivity, and ultimately superior thermoelectric performance than its rhombohedral counterpart. Prompted by these, in this work, the cubic phase of Ge0.9Sb0.1Te (presented as GeSbTe in the following content) nanocrystalline thin film is successfully realized by RF sputtering followed by post-annealing treatment. Additionally, Indium, as an electron donor to the germanium site and an effective scattering center, further moderates carrier concentration, enhances the Seebeck coefficient and reduces thermal conductivity. The optimal composition achieves an estimated peak of ∼1.95 and an estimated average of ∼ 1.11 within the temperature range of 300 K to 575 K, showcasing GeTe as a compelling candidate for applications close to room temperature.
碲化镉锗(GeTe)的斜方体相和立方体相作为一种前景广阔的无铅热电材料已被广泛探索。然而,这两种相在 ∼700 K 时的结构转变会导致热膨胀系数的突然变化,这对其更广泛的实际应用提出了挑战。此外,高温立方相具有多价带和强非谐相互作用的特点,与斜方体相相比,其功率因数更高,热导率更低,热电性能更优。有鉴于此,在这项工作中,通过射频溅射和退火后处理,成功实现了 Ge0.9Sb0.1Te(下文中称为 GeSbTe)纳米晶薄膜的立方相。此外,铟作为锗位点的电子供体和有效的散射中心,进一步缓和了载流子浓度,提高了塞贝克系数并降低了热导率。在 300 K 至 575 K 的温度范围内,最佳成分的峰值估计为 ∼ 1.95,平均值估计为 ∼ 1.11,这表明 GeTe 是接近室温应用的理想候选材料。
{"title":"Synergistic effect of indium doping on thermoelectric performance of cubic GeTe-based thin films","authors":"Suman Abbas, Bhawna Jarwal, Thi-Thong Ho, Suneesh Meledath Valiyaveettil, Cheng-Rong Hsing, Ta-Lei Chou, Ching-Ming Wei, Li-Chyong Chen, Kuei-Hsien Chen","doi":"10.1016/j.mtphys.2024.101581","DOIUrl":"https://doi.org/10.1016/j.mtphys.2024.101581","url":null,"abstract":"Germanium Telluride (GeTe) has been widely explored as a promising lead-free thermoelectric material in its rhombohedral and cubic phases. However, the structural transition between these two phases at ∼700 K causes an abrupt change of thermal expansion coefficient, challenging its broader practical applications. Also, as characterized by multi-valence bands and strong anharmonic interaction, the high-temperature cubic phase exhibits a higher power factor, lower thermal conductivity, and ultimately superior thermoelectric performance than its rhombohedral counterpart. Prompted by these, in this work, the cubic phase of Ge<sub>0.9</sub>Sb<sub>0.1</sub>Te (presented as GeSbTe in the following content) nanocrystalline thin film is successfully realized by RF sputtering followed by post-annealing treatment. Additionally, Indium, as an electron donor to the germanium site and an effective scattering center, further moderates carrier concentration, enhances the Seebeck coefficient and reduces thermal conductivity. The optimal composition achieves an estimated peak <span><math></math></span> of ∼1.95 and an estimated average <span><math></math></span> of ∼ 1.11 within the temperature range of 300 K to 575 K, showcasing GeTe as a compelling candidate for applications close to room temperature.","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":null,"pages":null},"PeriodicalIF":11.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142562243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Linear Dielectric Ceramics for Near-Zero Loss High-Capacitance Energy Storage 用于近零损耗高电容储能的线性介质陶瓷
IF 11.5 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-10-28 DOI: 10.1016/j.mtphys.2024.101579
Xuqing Zhang, Yongping Pu, Pan Gao, Xinye Huang, Jiahui Ma, Lei Zhang, Zenghui Liu
High energy-density (<em>W</em><sub>rec</sub>) dielectric capacitors have gained a focal point in the field of power electronic systems. In this study, high energy storage density materials with near-zero loss were obtained by constructing different types of defect dipoles in linear dielectric ceramics. Mg<sup>2+</sup>and Nb<sup>5+</sup> are strategically chosen as acceptor/donor ions, effectively replacing Ti<sup>4+</sup> within Ca<sub>0.5</sub>Sr<sub>0.5</sub>TiO<sub>3</sub>-based ceramics. The results indicate that under an applied electric field, specific defects such as <span><span style=""></span><span data-mathml='<math xmlns="http://www.w3.org/1998/Math/MathML" />' role="presentation" style="font-size: 90%; display: inline-block; position: relative;" tabindex="0"><svg aria-hidden="true" focusable="false" height="0.24ex" role="img" style="vertical-align: -0.12ex;" viewbox="0 -51.7 0 103.4" width="0" xmlns:xlink="http://www.w3.org/1999/xlink"><g fill="currentColor" stroke="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"></g></svg><span role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"></math></span></span><script type="math/mml"><math></math></script></span> and <span><span style=""></span><span data-mathml='<math xmlns="http://www.w3.org/1998/Math/MathML" />' role="presentation" style="font-size: 90%; display: inline-block; position: relative;" tabindex="0"><svg aria-hidden="true" focusable="false" height="0.24ex" role="img" style="vertical-align: -0.12ex;" viewbox="0 -51.7 0 103.4" width="0" xmlns:xlink="http://www.w3.org/1999/xlink"><g fill="currentColor" stroke="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"></g></svg><span role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"></math></span></span><script type="math/mml"><math></math></script></span>, can effectively regulate <span><span style=""></span><span data-mathml='<math xmlns="http://www.w3.org/1998/Math/MathML" />' role="presentation" style="font-size: 90%; display: inline-block; position: relative;" tabindex="0"><svg aria-hidden="true" focusable="false" height="0.24ex" role="img" style="vertical-align: -0.12ex;" viewbox="0 -51.7 0 103.4" width="0" xmlns:xlink="http://www.w3.org/1999/xlink"><g fill="currentColor" stroke="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"></g></svg><span role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"></math></span></span><script type="math/mml"><math></math></script></span> and electron movement, significantly reducing losses. Furthermore, high-density insulating grain boundaries, reduced <span><span style=""></span><span data-mathml='<math xmlns="http://www.w3.org/1998/Math/MathML" />' role="presentation" style="font-size: 90%; display: inline-block; position: relative;" tabindex="0"><svg aria-hidden="true" focusable="false" height="0.24ex" role="img" style="vertical-align: -0.12ex;" viewbox="0 -51.7 0 103.4" width="0" x
高能量密度(Wrec)电介质电容器已成为电力电子系统领域的焦点。在这项研究中,通过在线性介电陶瓷中构建不同类型的缺陷偶极子,获得了近零损耗的高能量存储密度材料。在 Ca0.5Sr0.5TiO3 基陶瓷中,Mg2+ 和 Nb5+ 被战略性地选择为接受/捐赠离子,有效地取代了 Ti4+。结果表明,在外加电场作用下,特定的缺陷(如和)可以有效地调节和电子运动,从而显著降低损耗。此外,高密度绝缘晶界、浓度降低和载流子迁移率减小也有助于增强电阻率,从而在 640 kV/cm 时获得较高的 Wrec ∼ 7.62 J/cm3 和 η ∼ 92%,使其成为迄今最有前途的线性电介质之一。值得注意的是,Wrec 和 η 在广泛的频率(1-500 Hz)、温度(25-175 °C)和无数次循环(多达 106 次)中都保持着显著的稳定性。此外,还使用有限元软件模拟了介电常数、电动势和局部电场的分布,进一步验证了微观结构与击穿电阻之间的相关性。这项创新工作提供了一种可持续的策略,通过对缺陷的策略性处理,在宽温度范围内优化无铅陶瓷的储能能力。
{"title":"Linear Dielectric Ceramics for Near-Zero Loss High-Capacitance Energy Storage","authors":"Xuqing Zhang, Yongping Pu, Pan Gao, Xinye Huang, Jiahui Ma, Lei Zhang, Zenghui Liu","doi":"10.1016/j.mtphys.2024.101579","DOIUrl":"https://doi.org/10.1016/j.mtphys.2024.101579","url":null,"abstract":"High energy-density (&lt;em&gt;W&lt;/em&gt;&lt;sub&gt;rec&lt;/sub&gt;) dielectric capacitors have gained a focal point in the field of power electronic systems. In this study, high energy storage density materials with near-zero loss were obtained by constructing different types of defect dipoles in linear dielectric ceramics. Mg&lt;sup&gt;2+&lt;/sup&gt;and Nb&lt;sup&gt;5+&lt;/sup&gt; are strategically chosen as acceptor/donor ions, effectively replacing Ti&lt;sup&gt;4+&lt;/sup&gt; within Ca&lt;sub&gt;0.5&lt;/sub&gt;Sr&lt;sub&gt;0.5&lt;/sub&gt;TiO&lt;sub&gt;3&lt;/sub&gt;-based ceramics. The results indicate that under an applied electric field, specific defects such as &lt;span&gt;&lt;span style=\"\"&gt;&lt;/span&gt;&lt;span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" /&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"&gt;&lt;svg aria-hidden=\"true\" focusable=\"false\" height=\"0.24ex\" role=\"img\" style=\"vertical-align: -0.12ex;\" viewbox=\"0 -51.7 0 103.4\" width=\"0\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"&gt;&lt;/g&gt;&lt;/svg&gt;&lt;span role=\"presentation\"&gt;&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;script type=\"math/mml\"&gt;&lt;math&gt;&lt;/math&gt;&lt;/script&gt;&lt;/span&gt; and &lt;span&gt;&lt;span style=\"\"&gt;&lt;/span&gt;&lt;span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" /&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"&gt;&lt;svg aria-hidden=\"true\" focusable=\"false\" height=\"0.24ex\" role=\"img\" style=\"vertical-align: -0.12ex;\" viewbox=\"0 -51.7 0 103.4\" width=\"0\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"&gt;&lt;/g&gt;&lt;/svg&gt;&lt;span role=\"presentation\"&gt;&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;script type=\"math/mml\"&gt;&lt;math&gt;&lt;/math&gt;&lt;/script&gt;&lt;/span&gt;, can effectively regulate &lt;span&gt;&lt;span style=\"\"&gt;&lt;/span&gt;&lt;span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" /&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"&gt;&lt;svg aria-hidden=\"true\" focusable=\"false\" height=\"0.24ex\" role=\"img\" style=\"vertical-align: -0.12ex;\" viewbox=\"0 -51.7 0 103.4\" width=\"0\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"&gt;&lt;/g&gt;&lt;/svg&gt;&lt;span role=\"presentation\"&gt;&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;script type=\"math/mml\"&gt;&lt;math&gt;&lt;/math&gt;&lt;/script&gt;&lt;/span&gt; and electron movement, significantly reducing losses. Furthermore, high-density insulating grain boundaries, reduced &lt;span&gt;&lt;span style=\"\"&gt;&lt;/span&gt;&lt;span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" /&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"&gt;&lt;svg aria-hidden=\"true\" focusable=\"false\" height=\"0.24ex\" role=\"img\" style=\"vertical-align: -0.12ex;\" viewbox=\"0 -51.7 0 103.4\" width=\"0\" x","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":null,"pages":null},"PeriodicalIF":11.5,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142520125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lightweight and highly heat-resistant copolymerized polyimide foams for superior thermal insulation and acoustic absorption 重量轻、耐热性高的共聚聚酰亚胺泡沫,具有出色的隔热和吸音效果
IF 1 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-10-25 DOI: 10.1016/j.mtphys.2024.101578
The development of lightweight and highly heat-resistant polyimide foams (PIFs) remains a great challenge in areas of aerospace, military ships, transportation, and industries. Herein, a series of lightweight and highly thermal-resistant copolymerized PIFs are successfully fabricated by the “stepwise heating-holding” thermal foaming of the copolymerized polyester ammonium salts (C-PEAS), using 3,3′,4,4′-benzophenone tetracarboxylic acid dianhydride (BTDA) and 2,3,3′,4′-biphenyl tetracarboxylic acid dianhydride (α-BPDA) as codianhydride, and p-phenylenediamine (PDA) as diamine. The introduction of α-BPDA increases the rigidity of PI molecule chains and foamability of C-PEAS, and significantly improves the heat resistance of PIFs. The resultant copolymerized PIFs exhibit ultra-low densities (<10 kg m−3), excellent heat resistance (Tg ranging from 351.2 °C to 405.6 °C), and high thermal stability. Moreover, they possess high flame retardancies (LOI>44 %) and low thermal conductivities (as low as 0.0463 W m−1 K−1 at 20 °C and no more than 0.0825 W m−1 K−1 at 200 °C), demonstrating their excellent thermal insulation properties in a wide temperature range. After the continuous heating at 200 °C for 40 min, the upper surface of PIFs present low average temperatures less than 60 °C. Additionally, the copolymerized PIFs exhibit remarkable acoustic properties with average acoustic absorption coefficients above 0.6 and noise reduction coefficients (NRC) above 0.3. Therefore, the lightweight and highly heat-resistant copolymerized PIFs show great application potentials in the extreme environments of aerospace, military ships, transportation, and industries.
轻质高耐热聚酰亚胺泡沫(PIF)的开发在航空航天、军用舰船、交通运输和工业领域仍是一项巨大挑战。在本文中,通过对共聚聚酯铵盐(C-PEAS)进行 "分步加热-保温 "热发泡,成功制造出一系列轻质高耐热共聚聚酰亚胺泡沫、以 3,3′,4,4′-二苯甲酮四羧酸二酐(BTDA)和 2,3,3′,4′-联苯四羧酸二酐(α-BPDA)作为二酐,对苯二胺(PDA)作为二胺。α-BPDA 的引入增加了 PI 分子链的刚性和 C-PEAS 的发泡性,并显著提高了 PIF 的耐热性。共聚后的 PIF 具有超低密度(10 kg-m-3)、优异的耐热性(Tg 范围为 351.2°C 至 405.6°C)和高热稳定性。此外,它们还具有高阻燃性(LOI>44%)和低导热性(20°C 时低至 0.0463 W-m-1∙K-1,200°C 时不超过 0.0825 W-m-1∙K-1),这表明它们在宽温度范围内具有出色的隔热性能。在 200°C 温度下持续加热 40 分钟后,PIF 上表面的平均温度低于 60°C。此外,共聚 PIF 还具有显著的声学特性,平均吸声系数高于 0.6,降噪系数(NRC)高于 0.3。因此,重量轻、耐热性高的共聚 PIF 在航空航天、军用船舶、交通运输和工业等极端环境中具有巨大的应用潜力。
{"title":"Lightweight and highly heat-resistant copolymerized polyimide foams for superior thermal insulation and acoustic absorption","authors":"","doi":"10.1016/j.mtphys.2024.101578","DOIUrl":"10.1016/j.mtphys.2024.101578","url":null,"abstract":"<div><div>The development of lightweight and highly heat-resistant polyimide foams (PIFs) remains a great challenge in areas of aerospace, military ships, transportation, and industries. Herein, a series of lightweight and highly thermal-resistant copolymerized PIFs are successfully fabricated by the “stepwise heating-holding” thermal foaming of the copolymerized polyester ammonium salts (C-PEAS), using 3,3′,4,4′-benzophenone tetracarboxylic acid dianhydride (BTDA) and 2,3,3′,4′-biphenyl tetracarboxylic acid dianhydride (α-BPDA) as codianhydride, and p-phenylenediamine (PDA) as diamine. The introduction of α-BPDA increases the rigidity of PI molecule chains and foamability of C-PEAS, and significantly improves the heat resistance of PIFs. The resultant copolymerized PIFs exhibit ultra-low densities (&lt;10 kg m<sup>−3</sup>), excellent heat resistance (<em>T</em><sub>g</sub> ranging from 351.2 °C to 405.6 °C), and high thermal stability. Moreover, they possess high flame retardancies (LOI&gt;44 %) and low thermal conductivities (as low as 0.0463 W m<sup>−1</sup> K<sup>−1</sup> at 20 °C and no more than 0.0825 W m<sup>−1</sup> K<sup>−1</sup> at 200 °C), demonstrating their excellent thermal insulation properties in a wide temperature range. After the continuous heating at 200 °C for 40 min, the upper surface of PIFs present low average temperatures less than 60 °C. Additionally, the copolymerized PIFs exhibit remarkable acoustic properties with average acoustic absorption coefficients above 0.6 and noise reduction coefficients (NRC) above 0.3. Therefore, the lightweight and highly heat-resistant copolymerized PIFs show great application potentials in the extreme environments of aerospace, military ships, transportation, and industries.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":null,"pages":null},"PeriodicalIF":10.0,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142489204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent advances and new frontier of flexible pressure sensors: Structure engineering, performances and applications 柔性压力传感器的最新进展和新领域:结构工程、性能和应用
IF 1 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-10-23 DOI: 10.1016/j.mtphys.2024.101576
Global research on flexible pressure sensors for evaluating human wellness and intelligent robotics is intensifying due to their advantages of excellent flexibility, lightweight design, high sensitivity and ease of integration. To facilitate practical applications, challenges associated with high-performance must be addressed, such as the trade-off between high sensitivity and a wide linear sensing range, fast response/recovery time, limited hysteresis, and stability under both dynamic and static pressure conditions. Moreover, ensuring the sensors’ reliability under various interferences and their multi-functionality to meet diverse usage requirements is essential for future applications. In this review, we summarize the latest advancements in multiple microstructures within the active layer and/or electrodes, which ensure excellent sensing performances, superior reliability and multifunctional features. Specifically, we focus on the design, working principles and sensing features of advanced micropattern, micropores, fiber-network, and hybrid microstructures in pressure sensors based on hierarchical micro-/nano-structure, conductive gradient coatings or multilayer structures. Additionally, the applications of microstructured pressure sensors in the fields of healthcare and human-machine interaction are summarized. Finally, we discuss the challenges and future prospects in the development of the next generation of flexible pressure sensors.
由于柔性压力传感器具有灵活性好、设计轻便、灵敏度高和易于集成等优点,全球对用于评估人体健康和智能机器人的柔性压力传感器的研究正在不断深入。为了促进实际应用,必须解决与高性能相关的挑战,例如在高灵敏度和宽线性传感范围、快速响应/恢复时间、有限滞后以及动态和静态压力条件下的稳定性之间进行权衡。此外,确保传感器在各种干扰下的可靠性及其多功能性,以满足不同的使用要求,对于未来的应用也至关重要。在本综述中,我们总结了活性层和/或电极内多重微结构的最新进展,这些微结构可确保优异的传感性能、卓越的可靠性和多功能特性。具体而言,我们将重点介绍基于分层微/纳米结构、导电梯度涂层或多层结构的压力传感器中先进的微图案、微孔、纤维网和混合微结构的设计、工作原理和传感功能。此外,我们还总结了微结构压力传感器在医疗保健和人机交互领域的应用。最后,我们讨论了开发下一代柔性压力传感器所面临的挑战和未来前景。
{"title":"Recent advances and new frontier of flexible pressure sensors: Structure engineering, performances and applications","authors":"","doi":"10.1016/j.mtphys.2024.101576","DOIUrl":"10.1016/j.mtphys.2024.101576","url":null,"abstract":"<div><div>Global research on flexible pressure sensors for evaluating human wellness and intelligent robotics is intensifying due to their advantages of excellent flexibility, lightweight design, high sensitivity and ease of integration. To facilitate practical applications, challenges associated with high-performance must be addressed, such as the trade-off between high sensitivity and a wide linear sensing range, fast response/recovery time, limited hysteresis, and stability under both dynamic and static pressure conditions. Moreover, ensuring the sensors’ reliability under various interferences and their multi-functionality to meet diverse usage requirements is essential for future applications. In this review, we summarize the latest advancements in multiple microstructures within the active layer and/or electrodes, which ensure excellent sensing performances, superior reliability and multifunctional features. Specifically, we focus on the design, working principles and sensing features of advanced micropattern, micropores, fiber-network, and hybrid microstructures in pressure sensors based on hierarchical micro-/nano-structure, conductive gradient coatings or multilayer structures. Additionally, the applications of microstructured pressure sensors in the fields of healthcare and human-machine interaction are summarized. Finally, we discuss the challenges and future prospects in the development of the next generation of flexible pressure sensors.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":null,"pages":null},"PeriodicalIF":10.0,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142487158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Materials Today Physics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1