Kevin Shee, Andrew W Liu, Carter Chan, Heiko Yang, Wilson Sui, Manoj Desai, Sunita Ho, Thomas Chi, Marshall L Stoller
{"title":"A Novel Machine-Learning Algorithm to Predict Stone Recurrence with 24-Hour Urine Data.","authors":"Kevin Shee, Andrew W Liu, Carter Chan, Heiko Yang, Wilson Sui, Manoj Desai, Sunita Ho, Thomas Chi, Marshall L Stoller","doi":"10.1089/end.2023.0457","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Objectives:</i></b> The absence of predictive markers for kidney stone recurrence poses a challenge for the clinical management of stone disease. The unpredictability of stone events is also a significant limitation for clinical trials, where many patients must be enrolled to obtain sufficient stone events for analysis. In this study, we sought to use machine learning methods to identify a novel algorithm to predict stone recurrence. <b><i>Subjects/Patients and Methods:</i></b> Patients enrolled in the Registry for Stones of the Kidney and Ureter (ReSKU), a registry of nephrolithiasis patients collected between 2015-2020, with at least one prospectively collected 24-hour urine test (Litholink 24-hour urine test; Labcorp) were included in the training set. A validation set was obtained from chart review of stone patients not enrolled in ReSKU with 24-hour urine data. Stone events were defined as either an office visit where a patient reports symptomatic passage of stones or a surgical procedure for stone removal. Seven prediction classification methods were evaluated. Predictive analyses and receiver operator characteristics (ROC) curve generation were performed in R. <b><i>Results:</i></b> A training set of 423 kidney stone patients with stone event data and 24-hour urine samples were trained using the prediction classification methods. The highest performing prediction model was a Logistic Regression with ElasticNet machine learning model (area under curve [AUC] = 0.65). Restricting analysis to high confidence predictions significantly improved model accuracy (AUC = 0.82). The prediction model was validated on a validation set of 172 stone patients with stone event data and 24-hour urine samples. Prediction accuracy in the validation set demonstrated moderate discriminative ability (AUC = 0.64). Repeat modeling was performed with four of the highest scoring features, and ROC analyses demonstrated minimal loss in accuracy (AUC = 0.63). <b><i>Conclusion:</i></b> Machine-learning models based on 24-hour urine data can predict stone recurrences with a moderate degree of accuracy.</p>","PeriodicalId":15723,"journal":{"name":"Journal of endourology","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of endourology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/end.2023.0457","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"UROLOGY & NEPHROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: The absence of predictive markers for kidney stone recurrence poses a challenge for the clinical management of stone disease. The unpredictability of stone events is also a significant limitation for clinical trials, where many patients must be enrolled to obtain sufficient stone events for analysis. In this study, we sought to use machine learning methods to identify a novel algorithm to predict stone recurrence. Subjects/Patients and Methods: Patients enrolled in the Registry for Stones of the Kidney and Ureter (ReSKU), a registry of nephrolithiasis patients collected between 2015-2020, with at least one prospectively collected 24-hour urine test (Litholink 24-hour urine test; Labcorp) were included in the training set. A validation set was obtained from chart review of stone patients not enrolled in ReSKU with 24-hour urine data. Stone events were defined as either an office visit where a patient reports symptomatic passage of stones or a surgical procedure for stone removal. Seven prediction classification methods were evaluated. Predictive analyses and receiver operator characteristics (ROC) curve generation were performed in R. Results: A training set of 423 kidney stone patients with stone event data and 24-hour urine samples were trained using the prediction classification methods. The highest performing prediction model was a Logistic Regression with ElasticNet machine learning model (area under curve [AUC] = 0.65). Restricting analysis to high confidence predictions significantly improved model accuracy (AUC = 0.82). The prediction model was validated on a validation set of 172 stone patients with stone event data and 24-hour urine samples. Prediction accuracy in the validation set demonstrated moderate discriminative ability (AUC = 0.64). Repeat modeling was performed with four of the highest scoring features, and ROC analyses demonstrated minimal loss in accuracy (AUC = 0.63). Conclusion: Machine-learning models based on 24-hour urine data can predict stone recurrences with a moderate degree of accuracy.
期刊介绍:
Journal of Endourology, JE Case Reports, and Videourology are the leading peer-reviewed journal, case reports publication, and innovative videojournal companion covering all aspects of minimally invasive urology research, applications, and clinical outcomes.
The leading journal of minimally invasive urology for over 30 years, Journal of Endourology is the essential publication for practicing surgeons who want to keep up with the latest surgical technologies in endoscopic, laparoscopic, robotic, and image-guided procedures as they apply to benign and malignant diseases of the genitourinary tract. This flagship journal includes the companion videojournal Videourology™ with every subscription. While Journal of Endourology remains focused on publishing rigorously peer reviewed articles, Videourology accepts original videos containing material that has not been reported elsewhere, except in the form of an abstract or a conference presentation.
Journal of Endourology coverage includes:
The latest laparoscopic, robotic, endoscopic, and image-guided techniques for treating both benign and malignant conditions
Pioneering research articles
Controversial cases in endourology
Techniques in endourology with accompanying videos
Reviews and epochs in endourology
Endourology survey section of endourology relevant manuscripts published in other journals.