Patrick Link , Lars Penter , Ulrike Rückert , Lars Klingel , Alexander Verl , Steffen Ihlenfeldt
{"title":"Real-time quality prediction and local adjustment of friction with digital twin in sheet metal forming","authors":"Patrick Link , Lars Penter , Ulrike Rückert , Lars Klingel , Alexander Verl , Steffen Ihlenfeldt","doi":"10.1016/j.rcim.2024.102848","DOIUrl":null,"url":null,"abstract":"<div><p>In sheet metal forming, the quality of a formed part is strongly influenced by the local lubrication conditions on the blank. Fluctuations in lubrication distribution can cause failures such as excessive thinning and cracks. Predicting these failures in real-time for the entire part is still a very challenging task. Machine learning (ML) based digital twins and advanced computing power offer new ways to analyze manufacturing processes inline in the shortest possible time. This study presents a digital twin for simulating a deep drawing process that incorporates an advanced ML model and optimization algorithm. Convolutional neural networks with RES-SE-U-Net architecture, were used to capture the full friction conditions on the blank. The ML model was trained with data from a calibrated finite element model. The ML model establishes a correlation between the local friction conditions across the blank and the quality of the drawn part. It accurately predicts the geometry and thinning of the formed part in real-time by assessing the friction conditions on the blank. A particle swarm optimization algorithm incorporates the ML model and provides tailored recommendations for adjusting local friction conditions to promptly correct detected quality deviations with minimal amount of additional lubricant. Experiments show that the ML model deployed on an industrial control system can predict part quality in real-time and recommend adjustments in case of quality deviation in 1.6 s. The error between prediction and ground truth is on average 0.16 mm for geometric accuracy and 0.02 % for thinning.</p></div>","PeriodicalId":21452,"journal":{"name":"Robotics and Computer-integrated Manufacturing","volume":"91 ","pages":"Article 102848"},"PeriodicalIF":9.1000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0736584524001352/pdfft?md5=5d551b25cc09da72b4f73439592e20c4&pid=1-s2.0-S0736584524001352-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics and Computer-integrated Manufacturing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0736584524001352","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
In sheet metal forming, the quality of a formed part is strongly influenced by the local lubrication conditions on the blank. Fluctuations in lubrication distribution can cause failures such as excessive thinning and cracks. Predicting these failures in real-time for the entire part is still a very challenging task. Machine learning (ML) based digital twins and advanced computing power offer new ways to analyze manufacturing processes inline in the shortest possible time. This study presents a digital twin for simulating a deep drawing process that incorporates an advanced ML model and optimization algorithm. Convolutional neural networks with RES-SE-U-Net architecture, were used to capture the full friction conditions on the blank. The ML model was trained with data from a calibrated finite element model. The ML model establishes a correlation between the local friction conditions across the blank and the quality of the drawn part. It accurately predicts the geometry and thinning of the formed part in real-time by assessing the friction conditions on the blank. A particle swarm optimization algorithm incorporates the ML model and provides tailored recommendations for adjusting local friction conditions to promptly correct detected quality deviations with minimal amount of additional lubricant. Experiments show that the ML model deployed on an industrial control system can predict part quality in real-time and recommend adjustments in case of quality deviation in 1.6 s. The error between prediction and ground truth is on average 0.16 mm for geometric accuracy and 0.02 % for thinning.
期刊介绍:
The journal, Robotics and Computer-Integrated Manufacturing, focuses on sharing research applications that contribute to the development of new or enhanced robotics, manufacturing technologies, and innovative manufacturing strategies that are relevant to industry. Papers that combine theory and experimental validation are preferred, while review papers on current robotics and manufacturing issues are also considered. However, papers on traditional machining processes, modeling and simulation, supply chain management, and resource optimization are generally not within the scope of the journal, as there are more appropriate journals for these topics. Similarly, papers that are overly theoretical or mathematical will be directed to other suitable journals. The journal welcomes original papers in areas such as industrial robotics, human-robot collaboration in manufacturing, cloud-based manufacturing, cyber-physical production systems, big data analytics in manufacturing, smart mechatronics, machine learning, adaptive and sustainable manufacturing, and other fields involving unique manufacturing technologies.