Multiple Forms and Functions of Premature Termination by RNA Polymerase II.

IF 4.7 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Molecular Biology Pub Date : 2025-01-01 Epub Date: 2024-08-09 DOI:10.1016/j.jmb.2024.168743
David L Bentley
{"title":"Multiple Forms and Functions of Premature Termination by RNA Polymerase II.","authors":"David L Bentley","doi":"10.1016/j.jmb.2024.168743","DOIUrl":null,"url":null,"abstract":"<p><p>Eukaryotic genomes are widely transcribed by RNA polymerase II (pol II) both within genes and in intergenic regions. POL II elongation complexes comprising the polymerase, the DNA template and nascent RNA transcript must be extremely processive in order to transcribe the longest genes which are over 1 megabase long and take many hours to traverse. Dedicated termination mechanisms are required to disrupt these highly stable complexes. Transcription termination occurs not only at the 3' ends of genes once a full length transcript has been made, but also within genes and in promiscuously transcribed intergenic regions. Termination at these latter positions is termed \"premature\" because it is not triggered in response to a specific signal that marks the 3' end of a gene, like a polyA site. One purpose of premature termination is to remove polymerases from intergenic regions where they are \"not wanted\" because they may interfere with transcription of overlapping genes or the progress of replication forks. Premature termination has recently been appreciated to occur at surprisingly high rates within genes where it is speculated to serve regulatory or quality control functions. In this review I summarize current understanding of the different mechanisms of premature termination and its potential functions.</p>","PeriodicalId":369,"journal":{"name":"Journal of Molecular Biology","volume":" ","pages":"168743"},"PeriodicalIF":4.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jmb.2024.168743","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Eukaryotic genomes are widely transcribed by RNA polymerase II (pol II) both within genes and in intergenic regions. POL II elongation complexes comprising the polymerase, the DNA template and nascent RNA transcript must be extremely processive in order to transcribe the longest genes which are over 1 megabase long and take many hours to traverse. Dedicated termination mechanisms are required to disrupt these highly stable complexes. Transcription termination occurs not only at the 3' ends of genes once a full length transcript has been made, but also within genes and in promiscuously transcribed intergenic regions. Termination at these latter positions is termed "premature" because it is not triggered in response to a specific signal that marks the 3' end of a gene, like a polyA site. One purpose of premature termination is to remove polymerases from intergenic regions where they are "not wanted" because they may interfere with transcription of overlapping genes or the progress of replication forks. Premature termination has recently been appreciated to occur at surprisingly high rates within genes where it is speculated to serve regulatory or quality control functions. In this review I summarize current understanding of the different mechanisms of premature termination and its potential functions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
RNA 聚合酶 II 提前终止的多种形式和功能。
真核生物基因组通过 RNA 聚合酶 II(pol II)在基因内和基因间区域广泛转录。由聚合酶、DNA 模板和新生 RNA 转录本组成的 POL II 延长复合体必须具有极强的处理能力,才能转录超过 1 兆位元酶长度的最长基因,并且需要多个小时才能完成转录。需要专门的终止机制来破坏这些高度稳定的复合体。一旦形成全长转录本,转录终止不仅发生在基因的 3'端,也会发生在基因内部和杂乱转录的基因间区域。后者的终止被称为 "过早 "终止,因为它并不是对标记基因 3'末端的特定信号(如 polyA 位点)做出反应而触发的。过早终止的一个目的是将聚合酶从 "不需要 "它们的基因间区域移除,因为它们可能会干扰重叠基因的转录或复制叉的进展。最近,人们发现基因内的过早终止发生率出奇地高,据推测,过早终止具有调控或质量控制功能。在这篇综述中,我总结了目前对过早终止的不同机制及其潜在功能的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Molecular Biology
Journal of Molecular Biology 生物-生化与分子生物学
CiteScore
11.30
自引率
1.80%
发文量
412
审稿时长
28 days
期刊介绍: Journal of Molecular Biology (JMB) provides high quality, comprehensive and broad coverage in all areas of molecular biology. The journal publishes original scientific research papers that provide mechanistic and functional insights and report a significant advance to the field. The journal encourages the submission of multidisciplinary studies that use complementary experimental and computational approaches to address challenging biological questions. Research areas include but are not limited to: Biomolecular interactions, signaling networks, systems biology; Cell cycle, cell growth, cell differentiation; Cell death, autophagy; Cell signaling and regulation; Chemical biology; Computational biology, in combination with experimental studies; DNA replication, repair, and recombination; Development, regenerative biology, mechanistic and functional studies of stem cells; Epigenetics, chromatin structure and function; Gene expression; Membrane processes, cell surface proteins and cell-cell interactions; Methodological advances, both experimental and theoretical, including databases; Microbiology, virology, and interactions with the host or environment; Microbiota mechanistic and functional studies; Nuclear organization; Post-translational modifications, proteomics; Processing and function of biologically important macromolecules and complexes; Molecular basis of disease; RNA processing, structure and functions of non-coding RNAs, transcription; Sorting, spatiotemporal organization, trafficking; Structural biology; Synthetic biology; Translation, protein folding, chaperones, protein degradation and quality control.
期刊最新文献
The HIV-1 Transcriptional Program: From Initiation to Elongation Control. ZC3H4/Restrictor Exerts a Stranglehold on Pervasive Transcription. Mechanisms of RNA Polymerase II Termination at the 3'-End of Genes. Multiple Forms and Functions of Premature Termination by RNA Polymerase II. The CDK9-SPT5 Axis in Control of Transcription Elongation by RNAPII.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1