Interplay of chromatin organization and mechanics of the cell nucleus.

IF 3.2 3区 生物学 Q2 BIOPHYSICS Biophysical journal Pub Date : 2024-10-01 Epub Date: 2024-08-08 DOI:10.1016/j.bpj.2024.08.003
Marco De Corato, Maria Jose Gomez-Benito
{"title":"Interplay of chromatin organization and mechanics of the cell nucleus.","authors":"Marco De Corato, Maria Jose Gomez-Benito","doi":"10.1016/j.bpj.2024.08.003","DOIUrl":null,"url":null,"abstract":"<p><p>The nucleus of eukaryotic cells is constantly subjected to different kinds of mechanical stimuli, which can impact the organization of chromatin and, subsequently, the expression of genetic information. Experiments from different groups showed that nuclear deformation can lead to transient or permanent condensation or decondensation of chromatin and the mechanical activation of genes, thus altering the transcription of proteins. Changes in chromatin organization, in turn, change the mechanical properties of the nucleus, possibly leading to an auxetic behavior. Here, we model the mechanics of the nucleus as a chemically active polymer gel in which the chromatin can exist in two states: a self-attractive state representing the heterochromatin and a repulsive state representing euchromatin. The model predicts reversible or irreversible changes in chromatin condensation levels upon external deformations of the nucleus. We find an auxetic response for a broad range of parameters under small and large deformations. These results agree with experimental observations and highlight the key role of chromatin organization in the mechanical response of the nucleus.</p>","PeriodicalId":8922,"journal":{"name":"Biophysical journal","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11480768/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bpj.2024.08.003","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/8 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The nucleus of eukaryotic cells is constantly subjected to different kinds of mechanical stimuli, which can impact the organization of chromatin and, subsequently, the expression of genetic information. Experiments from different groups showed that nuclear deformation can lead to transient or permanent condensation or decondensation of chromatin and the mechanical activation of genes, thus altering the transcription of proteins. Changes in chromatin organization, in turn, change the mechanical properties of the nucleus, possibly leading to an auxetic behavior. Here, we model the mechanics of the nucleus as a chemically active polymer gel in which the chromatin can exist in two states: a self-attractive state representing the heterochromatin and a repulsive state representing euchromatin. The model predicts reversible or irreversible changes in chromatin condensation levels upon external deformations of the nucleus. We find an auxetic response for a broad range of parameters under small and large deformations. These results agree with experimental observations and highlight the key role of chromatin organization in the mechanical response of the nucleus.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
染色质组织与细胞核力学的相互作用
真核细胞的细胞核不断受到各种机械刺激,这会影响染色质的组织,进而影响遗传信息的表达。不同研究小组的实验表明,细胞核变形可导致染色质短暂或永久性的凝集或解凝,并导致基因的机械激活,从而改变蛋白质的转录。染色质组织的变化反过来又会改变细胞核的机械特性,从而可能导致辅助行为。在这里,我们将细胞核的机械特性建模为一种化学活性聚合物凝胶,其中染色质可以存在两种状态:一种是代表异染色质的自吸引状态,另一种是代表常染色质的排斥状态。该模型预测了细胞核发生外部变形时染色质凝聚水平的可逆或不可逆变化。我们发现,在小变形和大变形的情况下,染色质凝集水平在很大的参数范围内都会发生辅助反应。这些结果与实验观察结果一致,突出了染色质组织在细胞核机械响应中的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biophysical journal
Biophysical journal 生物-生物物理
CiteScore
6.10
自引率
5.90%
发文量
3090
审稿时长
2 months
期刊介绍: BJ publishes original articles, letters, and perspectives on important problems in modern biophysics. The papers should be written so as to be of interest to a broad community of biophysicists. BJ welcomes experimental studies that employ quantitative physical approaches for the study of biological systems, including or spanning scales from molecule to whole organism. Experimental studies of a purely descriptive or phenomenological nature, with no theoretical or mechanistic underpinning, are not appropriate for publication in BJ. Theoretical studies should offer new insights into the understanding ofexperimental results or suggest new experimentally testable hypotheses. Articles reporting significant methodological or technological advances, which have potential to open new areas of biophysical investigation, are also suitable for publication in BJ. Papers describing improvements in accuracy or speed of existing methods or extra detail within methods described previously are not suitable for BJ.
期刊最新文献
Laplace Approximation of J-factors for rigid base and rigid base pair models of DNA cyclization. Interacting myosin head dynamics and their modification by 2'-deoxy-ADP. A conserved H-bond network in human aquaporin-1 is necessary for native folding and oligomerization. A computational model for lipid-anchored polysaccharide export by the outer membrane protein GfcD. Estimation of vibrational spectra of Trp-cage protein from nonequilibrium metadynamics simulations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1