{"title":"Hyperreflective choroidal foci in diabetic eyes with and without macular edema: Novel insights on diabetic choroidopathy","authors":"Giulia Midena , Luca Danieli , Elisabetta Pilotto , Luisa Frizziero , Edoardo Midena","doi":"10.1016/j.exer.2024.110020","DOIUrl":null,"url":null,"abstract":"<div><p>Histopathologic studies of diabetic choroid suggest that diabetic choroidopathy is a key aspect secondary to diabetes. Recently, hyperreflective choroidal foci (HCF) have been introduced as novel optical coherence tomography (OCT) parameter. The aim of this study was to identify and quantify HCF in diabetic subjects with retinopathy, with or without diabetic macular edema (DME). Eighty-five diabetic subjects with different degrees of DR were enrolled: 37 without DME and 48 with DME. All subjects underwent full ophthalmologic examination including spectral domain optical coherence tomography (OCT). OCT images were analyzed to quantify and localize HCF. Each image was analyzed by two independent, masked examiners. OCT images showed that all subjects (100%) had HCF in the different layers of the choroid. The number of HCF was significantly higher in diabetics with DME versus those without DME (p < 0.0001). HCF showed variable size, shape and location inside the choroid. They were mainly located in choriocapillaris and Sattler's layer, on the edges of blood vessels. The intraobserver and interobserver agreement was almost perfect (ICC >0.9). This study suggests that hyperreflective foci in the choroid of subjects with DR may be accurately identified with structural OCT. Their number significantly increases with the progression of DME. These HCF may represent, as in the retina, a sign of infiltration of inflammatory cells (mainly migrating microglia) into the choroid, according to the hypothesis raised by Jerry Lutty. HCF may confirm <em>in vivo</em> the histopathologic findings suggesting that diabetic choroidopathy may be primarily a neuroinflammatory disorder.</p></div>","PeriodicalId":12177,"journal":{"name":"Experimental eye research","volume":"247 ","pages":"Article 110020"},"PeriodicalIF":3.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental eye research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014483524002410","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Histopathologic studies of diabetic choroid suggest that diabetic choroidopathy is a key aspect secondary to diabetes. Recently, hyperreflective choroidal foci (HCF) have been introduced as novel optical coherence tomography (OCT) parameter. The aim of this study was to identify and quantify HCF in diabetic subjects with retinopathy, with or without diabetic macular edema (DME). Eighty-five diabetic subjects with different degrees of DR were enrolled: 37 without DME and 48 with DME. All subjects underwent full ophthalmologic examination including spectral domain optical coherence tomography (OCT). OCT images were analyzed to quantify and localize HCF. Each image was analyzed by two independent, masked examiners. OCT images showed that all subjects (100%) had HCF in the different layers of the choroid. The number of HCF was significantly higher in diabetics with DME versus those without DME (p < 0.0001). HCF showed variable size, shape and location inside the choroid. They were mainly located in choriocapillaris and Sattler's layer, on the edges of blood vessels. The intraobserver and interobserver agreement was almost perfect (ICC >0.9). This study suggests that hyperreflective foci in the choroid of subjects with DR may be accurately identified with structural OCT. Their number significantly increases with the progression of DME. These HCF may represent, as in the retina, a sign of infiltration of inflammatory cells (mainly migrating microglia) into the choroid, according to the hypothesis raised by Jerry Lutty. HCF may confirm in vivo the histopathologic findings suggesting that diabetic choroidopathy may be primarily a neuroinflammatory disorder.
期刊介绍:
The primary goal of Experimental Eye Research is to publish original research papers on all aspects of experimental biology of the eye and ocular tissues that seek to define the mechanisms of normal function and/or disease. Studies of ocular tissues that encompass the disciplines of cell biology, developmental biology, genetics, molecular biology, physiology, biochemistry, biophysics, immunology or microbiology are most welcomed. Manuscripts that are purely clinical or in a surgical area of ophthalmology are not appropriate for submission to Experimental Eye Research and if received will be returned without review.