{"title":"Loss of trabecular meshwork stem cells is correlated with open angle glaucoma","authors":"Sarah Brumley , Shuyu Xian , Markus H. Kuehn","doi":"10.1016/j.exer.2025.110296","DOIUrl":null,"url":null,"abstract":"<div><div>The trabecular meshwork (TM) of the eye is critical in maintaining aqueous humor outflow and intraocular pressure (IOP). The cellular density in the TM decreases with age and is particularly low in eyes with glaucoma. TM cells are thought to be derived from a population of stem cells, referred to as TM stem cells (TMSCs). To investigate the relationship between TM cellular density and TMSCs, the number of TMSCs and TM cells was compared in human eyes obtained from young donors, individuals with glaucoma, and age-matched controls. Findings obtained confirm that eyes of younger donors contain the largest number of TM cells, while those of older healthy donors contained more TM cells than glaucomatous eyes of the same age (p = 0.0007). Likewise, we detected the largest number of TMSCs in young eyes, significantly higher than in healthy older eyes (p < 0.0001). Again, eyes from glaucomatous patients contained fewer TMSC than those of healthy donors (p < 0.0001). Together the data indicate a clear decline in the number of TMSCs with age and a further reduction in eyes with glaucoma. Although this study does not establish causality, our finding is consistent with the notion that the degeneration or loss of stemness of TMSCs is the cause of reduced TM cellularity which, in turn, is associated with TM dysfunction and the development of elevated IOP.</div></div>","PeriodicalId":12177,"journal":{"name":"Experimental eye research","volume":"253 ","pages":"Article 110296"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental eye research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014483525000673","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The trabecular meshwork (TM) of the eye is critical in maintaining aqueous humor outflow and intraocular pressure (IOP). The cellular density in the TM decreases with age and is particularly low in eyes with glaucoma. TM cells are thought to be derived from a population of stem cells, referred to as TM stem cells (TMSCs). To investigate the relationship between TM cellular density and TMSCs, the number of TMSCs and TM cells was compared in human eyes obtained from young donors, individuals with glaucoma, and age-matched controls. Findings obtained confirm that eyes of younger donors contain the largest number of TM cells, while those of older healthy donors contained more TM cells than glaucomatous eyes of the same age (p = 0.0007). Likewise, we detected the largest number of TMSCs in young eyes, significantly higher than in healthy older eyes (p < 0.0001). Again, eyes from glaucomatous patients contained fewer TMSC than those of healthy donors (p < 0.0001). Together the data indicate a clear decline in the number of TMSCs with age and a further reduction in eyes with glaucoma. Although this study does not establish causality, our finding is consistent with the notion that the degeneration or loss of stemness of TMSCs is the cause of reduced TM cellularity which, in turn, is associated with TM dysfunction and the development of elevated IOP.
期刊介绍:
The primary goal of Experimental Eye Research is to publish original research papers on all aspects of experimental biology of the eye and ocular tissues that seek to define the mechanisms of normal function and/or disease. Studies of ocular tissues that encompass the disciplines of cell biology, developmental biology, genetics, molecular biology, physiology, biochemistry, biophysics, immunology or microbiology are most welcomed. Manuscripts that are purely clinical or in a surgical area of ophthalmology are not appropriate for submission to Experimental Eye Research and if received will be returned without review.