Rationale and design of the artificial intelligence scalable solution for acute myocardial infarction (ASSIST) study

IF 1.3 4区 医学 Q3 CARDIAC & CARDIOVASCULAR SYSTEMS Journal of electrocardiology Pub Date : 2024-08-05 DOI:10.1016/j.jelectrocard.2024.153768
Tomás Domingo-Gardeta , José M. Montero-Cabezas , Alfonso Jurado-Román , Manel Sabaté , Jaime Aboal , Adrián Baranchuk , Xavier Carrillo , Sebastián García-Zamora , Hélder Dores , Viktor van der Valk , Roderick W.C. Scherptong , Joan F. Andrés-Cordón , Pablo Vidal , Daniel Moreno-Martínez , Raquel Toribio-Fernández , José María Lillo-Castellano , Roberto Cruz , François De Guio , Manuel Marina-Breysse , Manuel Martínez-Sellés
{"title":"Rationale and design of the artificial intelligence scalable solution for acute myocardial infarction (ASSIST) study","authors":"Tomás Domingo-Gardeta ,&nbsp;José M. Montero-Cabezas ,&nbsp;Alfonso Jurado-Román ,&nbsp;Manel Sabaté ,&nbsp;Jaime Aboal ,&nbsp;Adrián Baranchuk ,&nbsp;Xavier Carrillo ,&nbsp;Sebastián García-Zamora ,&nbsp;Hélder Dores ,&nbsp;Viktor van der Valk ,&nbsp;Roderick W.C. Scherptong ,&nbsp;Joan F. Andrés-Cordón ,&nbsp;Pablo Vidal ,&nbsp;Daniel Moreno-Martínez ,&nbsp;Raquel Toribio-Fernández ,&nbsp;José María Lillo-Castellano ,&nbsp;Roberto Cruz ,&nbsp;François De Guio ,&nbsp;Manuel Marina-Breysse ,&nbsp;Manuel Martínez-Sellés","doi":"10.1016/j.jelectrocard.2024.153768","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Acute coronary syndrome (ACS), specifically ST-segment elevation myocardial infarction is a major cause of morbidity and mortality throughout Europe. Diagnosis in the acute setting is mainly based on clinical symptoms and physician's interpretation of an electrocardiogram (ECG), which may be subject to errors. ST-segment elevation is the leading criteria to activate urgent reperfusion therapy, but a clear ST-elevation pattern might not be present in patients with coronary occlusion and ST-segment elevation might be seen in patients with normal coronary arteries.</p></div><div><h3>Methods</h3><p>The ASSIST project is a retrospective observational study aiming to improve the ECG-assisted assessment of ACS patients in the acute setting by incorporating an artificial intelligence platform, Willem™ to analyze 12‑lead ECGs. Our aim is to improve diagnostic accuracy and reduce treatment delays. ECG and clinical data collected during this study will enable the optimization and validation of Willem™. A retrospective multicenter study will collect ECG, clinical, and coronary angiography data from 10,309 patients. The primary outcome is the performance of this tool in the correct identification of acute myocardial infarction with coronary artery occlusion. Model performance will be evaluated internally with patients recruited in this retrospective study while external validation will be performed in a second stage.</p></div><div><h3>Conclusion</h3><p>ASSIST will provide key data to optimize Willem™ platform to detect myocardial infarction based on ECG-assessment alone. Our hypothesis is that such a diagnostic approach may reduce time delays, enhance diagnostic accuracy, and improve clinical outcomes.</p></div>","PeriodicalId":15606,"journal":{"name":"Journal of electrocardiology","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of electrocardiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022073624002383","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Acute coronary syndrome (ACS), specifically ST-segment elevation myocardial infarction is a major cause of morbidity and mortality throughout Europe. Diagnosis in the acute setting is mainly based on clinical symptoms and physician's interpretation of an electrocardiogram (ECG), which may be subject to errors. ST-segment elevation is the leading criteria to activate urgent reperfusion therapy, but a clear ST-elevation pattern might not be present in patients with coronary occlusion and ST-segment elevation might be seen in patients with normal coronary arteries.

Methods

The ASSIST project is a retrospective observational study aiming to improve the ECG-assisted assessment of ACS patients in the acute setting by incorporating an artificial intelligence platform, Willem™ to analyze 12‑lead ECGs. Our aim is to improve diagnostic accuracy and reduce treatment delays. ECG and clinical data collected during this study will enable the optimization and validation of Willem™. A retrospective multicenter study will collect ECG, clinical, and coronary angiography data from 10,309 patients. The primary outcome is the performance of this tool in the correct identification of acute myocardial infarction with coronary artery occlusion. Model performance will be evaluated internally with patients recruited in this retrospective study while external validation will be performed in a second stage.

Conclusion

ASSIST will provide key data to optimize Willem™ platform to detect myocardial infarction based on ECG-assessment alone. Our hypothesis is that such a diagnostic approach may reduce time delays, enhance diagnostic accuracy, and improve clinical outcomes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
急性心肌梗塞人工智能可扩展解决方案(ASSIST)研究的原理和设计。
背景:急性冠状动脉综合征(ACS),特别是 ST 段抬高型心肌梗死,是整个欧洲发病率和死亡率的主要原因。急性期的诊断主要基于临床症状和医生对心电图(ECG)的判读,这可能会出现误差。ST段抬高是启动紧急再灌注治疗的主要标准,但冠状动脉闭塞患者可能不存在明显的ST段抬高模式,冠状动脉正常的患者也可能出现ST段抬高:ASSIST 项目是一项回顾性观察研究,旨在通过人工智能平台 Willem™ 分析 12 导联心电图,改善急性期 ACS 患者的心电图辅助评估。我们的目标是提高诊断准确性,减少治疗延误。本研究期间收集的心电图和临床数据将有助于优化和验证 Willem™。这项回顾性多中心研究将收集 10,309 名患者的心电图、临床和冠状动脉造影数据。主要结果是该工具在正确识别冠状动脉闭塞的急性心肌梗死方面的性能。模型性能将通过这项回顾性研究招募的患者进行内部评估,而外部验证将在第二阶段进行:ASSIST 将为优化 Willem™ 平台提供关键数据,以便仅根据心电图评估检测心肌梗死。我们的假设是,这种诊断方法可以减少时间延误、提高诊断准确性并改善临床结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of electrocardiology
Journal of electrocardiology 医学-心血管系统
CiteScore
2.70
自引率
7.70%
发文量
152
审稿时长
38 days
期刊介绍: The Journal of Electrocardiology is devoted exclusively to clinical and experimental studies of the electrical activities of the heart. It seeks to contribute significantly to the accuracy of diagnosis and prognosis and the effective treatment, prevention, or delay of heart disease. Editorial contents include electrocardiography, vectorcardiography, arrhythmias, membrane action potential, cardiac pacing, monitoring defibrillation, instrumentation, drug effects, and computer applications.
期刊最新文献
The de Winter electrocardiographic pattern: A systematic review of case reports. Nonparoxysmal junctional tachycardia associated with 3:2 Wenckebach exit block in the absence of digitalis therapy Study on the feasibility of distinguishing ventricular and pre-excited arrhythmia rhythms by a new algorithm The ECG of a 6-year-old girl Use of ST/HR hysteresis decreases false positive rate in exercise electrocardiography test of middle-aged asymptomatic women
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1