Peng Zhang, Yahui Wang, Zhimin Wang, Shengqiang Di, Xinyi Zhang, Di Ma, Zhilong Bao, Fangfang Ma
{"title":"Chrysanthemum lavandulifolium homolog CYCLIN A2;1 modulates cell division in ray florets.","authors":"Peng Zhang, Yahui Wang, Zhimin Wang, Shengqiang Di, Xinyi Zhang, Di Ma, Zhilong Bao, Fangfang Ma","doi":"10.1093/jxb/erae325","DOIUrl":null,"url":null,"abstract":"<p><p>The morphology of ray florets in chrysanthemums is tightly associated with cell division and expansion, both of which require proper progression of the cell cycle. Here, we identified a Chrysanthemum lavandulifolium homolog, CYCLIN A2;1 (CYCA2;1), the expression of which in ray florets is negatively correlated with petal width. We found that CYC2a, a TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP) transcription factor in the CYCLOIDEA2 (CYC2) family, interacts with and stabilizes CYC2b, and the latter can bind to the promoter of CYCA2;1 to activate its transcription. Overexpression of CYCA2;1 in C. lavandulifolium reduced the size of capitula and ray florets. Cytological analysis revealed that CYCA2;1 overexpression inhibited both cell division and expansion via repression of the mitotic cell cycle in ray florets, the latitudinal development of which was more relatively negatively influenced, thereby leading to increased ratios of petal length to width at later developmental stages. Yeast two-hybrid library screening revealed multiple proteins that interacted with CYCA2;1 including ACTIN-RELATED PROTEIN7 (ARP7), and silencing ARP7 inhibited the development of ray florets. Co-immunoprecipitation assays confirmed that CYCA2;1 could induce the degradation of ARP7 to inhibit the development of ray florets. Taken together, our results indicate the presence of a regulatory network in ray floret development in chrysanthemum consisting of CYC2b-CYCA2;1-ARP7 that acts via governing mitosis. The identification of this network has the potential to facilitate breeding efforts targeted at producing novel ornamental traits in the flowers.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jxb/erae325","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The morphology of ray florets in chrysanthemums is tightly associated with cell division and expansion, both of which require proper progression of the cell cycle. Here, we identified a Chrysanthemum lavandulifolium homolog, CYCLIN A2;1 (CYCA2;1), the expression of which in ray florets is negatively correlated with petal width. We found that CYC2a, a TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP) transcription factor in the CYCLOIDEA2 (CYC2) family, interacts with and stabilizes CYC2b, and the latter can bind to the promoter of CYCA2;1 to activate its transcription. Overexpression of CYCA2;1 in C. lavandulifolium reduced the size of capitula and ray florets. Cytological analysis revealed that CYCA2;1 overexpression inhibited both cell division and expansion via repression of the mitotic cell cycle in ray florets, the latitudinal development of which was more relatively negatively influenced, thereby leading to increased ratios of petal length to width at later developmental stages. Yeast two-hybrid library screening revealed multiple proteins that interacted with CYCA2;1 including ACTIN-RELATED PROTEIN7 (ARP7), and silencing ARP7 inhibited the development of ray florets. Co-immunoprecipitation assays confirmed that CYCA2;1 could induce the degradation of ARP7 to inhibit the development of ray florets. Taken together, our results indicate the presence of a regulatory network in ray floret development in chrysanthemum consisting of CYC2b-CYCA2;1-ARP7 that acts via governing mitosis. The identification of this network has the potential to facilitate breeding efforts targeted at producing novel ornamental traits in the flowers.
期刊介绍:
The Journal of Experimental Botany publishes high-quality primary research and review papers in the plant sciences. These papers cover a range of disciplines from molecular and cellular physiology and biochemistry through whole plant physiology to community physiology.
Full-length primary papers should contribute to our understanding of how plants develop and function, and should provide new insights into biological processes. The journal will not publish purely descriptive papers or papers that report a well-known process in a species in which the process has not been identified previously. Articles should be concise and generally limited to 10 printed pages.