Machine learning approaches to predict whether MEPs can be elicited via TMS

IF 2.7 4区 医学 Q2 BIOCHEMICAL RESEARCH METHODS Journal of Neuroscience Methods Pub Date : 2024-08-09 DOI:10.1016/j.jneumeth.2024.110242
Fang Jin , Sjoerd M. Bruijn , Andreas Daffertshofer
{"title":"Machine learning approaches to predict whether MEPs can be elicited via TMS","authors":"Fang Jin ,&nbsp;Sjoerd M. Bruijn ,&nbsp;Andreas Daffertshofer","doi":"10.1016/j.jneumeth.2024.110242","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Transcranial magnetic stimulation (TMS) is a valuable technique for assessing the function of the motor cortex and cortico-muscular pathways. TMS activates the motoneurons in the cortex, which after transmission along cortico-muscular pathways can be measured as motor-evoked potentials (MEPs). The position and orientation of the TMS coil and the intensity used to deliver a TMS pulse are considered central TMS setup parameters influencing the presence/absence of MEPs.</p></div><div><h3>New method</h3><p>We sought to predict the presence of MEPs from TMS setup parameters using machine learning. We trained different machine learners using either within-subject or between-subject designs.</p></div><div><h3>Results</h3><p>We obtained prediction accuracies of on average 77 % and 65 % with maxima up to up to 90 % and 72 % within and between subjects, respectively. Across the board, a bagging ensemble appeared to be the most suitable approach to predict the presence of MEPs.</p></div><div><h3>Conclusions</h3><p>Although within a subject the prediction of MEPs via TMS setup parameter-based machine learning might be feasible, the limited accuracy between subjects suggests that the transfer of this approach to experimental or clinical research comes with significant challenges.</p></div>","PeriodicalId":16415,"journal":{"name":"Journal of Neuroscience Methods","volume":"410 ","pages":"Article 110242"},"PeriodicalIF":2.7000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0165027024001870/pdfft?md5=66a40e55edad1daf20c42544f140f858&pid=1-s2.0-S0165027024001870-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience Methods","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165027024001870","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Transcranial magnetic stimulation (TMS) is a valuable technique for assessing the function of the motor cortex and cortico-muscular pathways. TMS activates the motoneurons in the cortex, which after transmission along cortico-muscular pathways can be measured as motor-evoked potentials (MEPs). The position and orientation of the TMS coil and the intensity used to deliver a TMS pulse are considered central TMS setup parameters influencing the presence/absence of MEPs.

New method

We sought to predict the presence of MEPs from TMS setup parameters using machine learning. We trained different machine learners using either within-subject or between-subject designs.

Results

We obtained prediction accuracies of on average 77 % and 65 % with maxima up to up to 90 % and 72 % within and between subjects, respectively. Across the board, a bagging ensemble appeared to be the most suitable approach to predict the presence of MEPs.

Conclusions

Although within a subject the prediction of MEPs via TMS setup parameter-based machine learning might be feasible, the limited accuracy between subjects suggests that the transfer of this approach to experimental or clinical research comes with significant challenges.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用机器学习方法预测是否能通过 TMS 激发 MEPs。
背景:经颅磁刺激(TMS)是评估运动皮层和皮质-肌肉通路功能的一项重要技术。TMS 可激活大脑皮层中的运动神经元,这些神经元沿皮质-肌肉通路传递后,可测量为运动诱发电位(MEP)。TMS 线圈的位置和方向以及传递 TMS 脉冲的强度被认为是影响 MEPs 存在/不存在的核心 TMS 设置参数:我们试图利用机器学习从 TMS 设置参数预测 MEPs 的存在。我们使用受试者内或受试者间设计训练不同的机器学习器:结果:我们获得了平均 77% 和 65% 的预测准确率,受试者内和受试者间的预测准确率最高分别达到 90% 和 72%。总体而言,袋装集合似乎是预测 MEPs 存在的最合适方法:结论:虽然通过基于 TMS 设置参数的机器学习预测受试者内部的 MEPs 是可行的,但受试者之间的准确性有限,这表明将这种方法应用于实验或临床研究将面临巨大挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Neuroscience Methods
Journal of Neuroscience Methods 医学-神经科学
CiteScore
7.10
自引率
3.30%
发文量
226
审稿时长
52 days
期刊介绍: The Journal of Neuroscience Methods publishes papers that describe new methods that are specifically for neuroscience research conducted in invertebrates, vertebrates or in man. Major methodological improvements or important refinements of established neuroscience methods are also considered for publication. The Journal''s Scope includes all aspects of contemporary neuroscience research, including anatomical, behavioural, biochemical, cellular, computational, molecular, invasive and non-invasive imaging, optogenetic, and physiological research investigations.
期刊最新文献
Electrode configurations for sensitive and specific detection of compound muscle action potentials to the tibialis anterior muscle after peroneal nerve injury in rats. Enhancing fMRI quality control. Multi-layer transfer learning algorithm based on improved common spatial pattern for brain-computer interfaces. Fractal analysis to assess the differentiation state of oligodendroglia in culture. STSimM: A new tool for evaluating neuron model performance and detecting spike trains similarity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1