Evaluating the efficacy of non-invasive brain stimulation techniques in managing pediatric epilepsy.

IF 2.7 4区 医学 Q2 BIOCHEMICAL RESEARCH METHODS Journal of Neuroscience Methods Pub Date : 2025-02-28 DOI:10.1016/j.jneumeth.2025.110412
Guangshun Hou, Yujie Guo, Chuanmei Chen, Xinghua Cui, Zaifen Gao, Fang Qi
{"title":"Evaluating the efficacy of non-invasive brain stimulation techniques in managing pediatric epilepsy.","authors":"Guangshun Hou, Yujie Guo, Chuanmei Chen, Xinghua Cui, Zaifen Gao, Fang Qi","doi":"10.1016/j.jneumeth.2025.110412","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Pediatric epilepsy significantly affects cognitive and developmental outcomes, with drug-resistant epilepsy (DRE) posing a major challenge. While pharmacological and surgical interventions remain standard treatments, they often fail in refractory cases. Non-Invasive Brain Stimulation (NIBS), including Transcranial Magnetic Stimulation (TMS) and Transcranial Direct Current Stimulation (tDCS), has emerged as a promising therapeutic alternative.</p><p><strong>New method: </strong>This study systematically reviews and compares the efficacy, safety, and feasibility of TMS and tDCS in pediatric epilepsy. The analysis evaluates seizure reduction, cognitive improvements, and treatment tolerability. A comparative assessment considers mechanisms of action, precision, accessibility, and clinical applications.</p><p><strong>Results: </strong>TMS and tDCS treatments produce a 30-40% seizure reduction effect in addition to attaining enhanced attention and memory functions. TMS provides top-level spatial precision but tDCS allows low-cost portable treatment that suits home use. Studies show that patients experience minimal and short-term discomfort on their scalp but only minor headaches as reported side effects.</p><p><strong>Comparison with existing methods: </strong>Compared to pharmacological treatments, NIBS offers a non-invasive alternative with fewer systemic side effects. Unlike surgery, which requires invasive intervention, NIBS is safe, repeatable, and adaptable. However, cost (TMS), lack of standardization, and patient response variability remain challenges to clinical adoption.</p><p><strong>Conclusions: </strong>NIBS is a safe and effective alternative for pediatric epilepsy but requires protocol standardization, accessibility improvements, and long-term efficacy validation. Future research should focus on biomarker-driven personalized treatments, AI-optimized stimulation, and affordable device development for broader clinical applications.</p>","PeriodicalId":16415,"journal":{"name":"Journal of Neuroscience Methods","volume":" ","pages":"110412"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience Methods","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jneumeth.2025.110412","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Pediatric epilepsy significantly affects cognitive and developmental outcomes, with drug-resistant epilepsy (DRE) posing a major challenge. While pharmacological and surgical interventions remain standard treatments, they often fail in refractory cases. Non-Invasive Brain Stimulation (NIBS), including Transcranial Magnetic Stimulation (TMS) and Transcranial Direct Current Stimulation (tDCS), has emerged as a promising therapeutic alternative.

New method: This study systematically reviews and compares the efficacy, safety, and feasibility of TMS and tDCS in pediatric epilepsy. The analysis evaluates seizure reduction, cognitive improvements, and treatment tolerability. A comparative assessment considers mechanisms of action, precision, accessibility, and clinical applications.

Results: TMS and tDCS treatments produce a 30-40% seizure reduction effect in addition to attaining enhanced attention and memory functions. TMS provides top-level spatial precision but tDCS allows low-cost portable treatment that suits home use. Studies show that patients experience minimal and short-term discomfort on their scalp but only minor headaches as reported side effects.

Comparison with existing methods: Compared to pharmacological treatments, NIBS offers a non-invasive alternative with fewer systemic side effects. Unlike surgery, which requires invasive intervention, NIBS is safe, repeatable, and adaptable. However, cost (TMS), lack of standardization, and patient response variability remain challenges to clinical adoption.

Conclusions: NIBS is a safe and effective alternative for pediatric epilepsy but requires protocol standardization, accessibility improvements, and long-term efficacy validation. Future research should focus on biomarker-driven personalized treatments, AI-optimized stimulation, and affordable device development for broader clinical applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
评估非侵入性脑部刺激技术在治疗小儿癫痫方面的疗效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Neuroscience Methods
Journal of Neuroscience Methods 医学-神经科学
CiteScore
7.10
自引率
3.30%
发文量
226
审稿时长
52 days
期刊介绍: The Journal of Neuroscience Methods publishes papers that describe new methods that are specifically for neuroscience research conducted in invertebrates, vertebrates or in man. Major methodological improvements or important refinements of established neuroscience methods are also considered for publication. The Journal''s Scope includes all aspects of contemporary neuroscience research, including anatomical, behavioural, biochemical, cellular, computational, molecular, invasive and non-invasive imaging, optogenetic, and physiological research investigations.
期刊最新文献
Evaluating the efficacy of non-invasive brain stimulation techniques in managing pediatric epilepsy. An immunohistochemical protocol for visualizing adrenergic receptor subtypes in the rhesus macaque hippocampus The 3D Vertical Maze: A new model system for studying the interactions between social and spatial cognition. A 3D-printed modular implant for extracellular recordings Exploring temporal information dynamics in Spiking Neural Networks: Fast Temporal Efficient Training
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1