Dat Thanh Dinh , Chia-Ying Li , Min-Wei Wu , Chia-Feng Hsieh , Xuan-Yu Chen , Cheng-Chung Chang
{"title":"An acridone based fluorescent dye for lipid droplet tracking and cancer diagnosis","authors":"Dat Thanh Dinh , Chia-Ying Li , Min-Wei Wu , Chia-Feng Hsieh , Xuan-Yu Chen , Cheng-Chung Chang","doi":"10.1016/j.jphotobiol.2024.113000","DOIUrl":null,"url":null,"abstract":"<div><p>Lipid droplets (LDs) are spherical organelles that localize in the cytosol of eukaryotic cells. Different proteins are embedded on the surface of LDs, so LDs play a vital role in the physiological activities of cells. The dysregulation of LDs is associated with various human diseases, such as diabetes and obesity. Therefore, it is essential to develop a fluorescent dye that labels LDs to detect and monitor illnesses. In this study, we developed the compound BDAA12C for staining LDs in cells. BDAA12C exhibits excellent LD specificity and low toxicity, enabling us to successfully stain and observe the fusion of LDs in A549 cancer cells. Furthermore, we also successfully distinguished A549 cancer cells and MRC-5 normal cells in a co-culture experiment and in normal and tumour tissues. Interestingly, we found different localizations of BDAA12C in well-fed and starved A549 cancer cells and consequently illustrated the transfer of fatty acids (FAs) from LDs to mitochondria to supply energy for β-oxidation upon starvation. Therefore, BDAA12C is a promising LD-targeted probe for cancer diagnosis and tracking lipid trafficking within cells.</p></div>","PeriodicalId":16772,"journal":{"name":"Journal of photochemistry and photobiology. B, Biology","volume":"258 ","pages":"Article 113000"},"PeriodicalIF":3.9000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of photochemistry and photobiology. B, Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S101113442400160X","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Lipid droplets (LDs) are spherical organelles that localize in the cytosol of eukaryotic cells. Different proteins are embedded on the surface of LDs, so LDs play a vital role in the physiological activities of cells. The dysregulation of LDs is associated with various human diseases, such as diabetes and obesity. Therefore, it is essential to develop a fluorescent dye that labels LDs to detect and monitor illnesses. In this study, we developed the compound BDAA12C for staining LDs in cells. BDAA12C exhibits excellent LD specificity and low toxicity, enabling us to successfully stain and observe the fusion of LDs in A549 cancer cells. Furthermore, we also successfully distinguished A549 cancer cells and MRC-5 normal cells in a co-culture experiment and in normal and tumour tissues. Interestingly, we found different localizations of BDAA12C in well-fed and starved A549 cancer cells and consequently illustrated the transfer of fatty acids (FAs) from LDs to mitochondria to supply energy for β-oxidation upon starvation. Therefore, BDAA12C is a promising LD-targeted probe for cancer diagnosis and tracking lipid trafficking within cells.
期刊介绍:
The Journal of Photochemistry and Photobiology B: Biology provides a forum for the publication of papers relating to the various aspects of photobiology, as well as a means for communication in this multidisciplinary field.
The scope includes:
- Bioluminescence
- Chronobiology
- DNA repair
- Environmental photobiology
- Nanotechnology in photobiology
- Photocarcinogenesis
- Photochemistry of biomolecules
- Photodynamic therapy
- Photomedicine
- Photomorphogenesis
- Photomovement
- Photoreception
- Photosensitization
- Photosynthesis
- Phototechnology
- Spectroscopy of biological systems
- UV and visible radiation effects and vision.