Genetic diversity and genome-wide association study of partial resistance to Sclerotinia stem rot in a Canadian soybean germplasm panel.

IF 4.4 1区 农林科学 Q1 AGRONOMY Theoretical and Applied Genetics Pub Date : 2024-08-11 DOI:10.1007/s00122-024-04708-8
Deus Mugabe, Mohsen Yoosefzadeh-Najafabadi, Istvan Rajcan
{"title":"Genetic diversity and genome-wide association study of partial resistance to Sclerotinia stem rot in a Canadian soybean germplasm panel.","authors":"Deus Mugabe, Mohsen Yoosefzadeh-Najafabadi, Istvan Rajcan","doi":"10.1007/s00122-024-04708-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Key message: </strong>Developing genetically resistant soybean cultivars is key in controlling the destructive Sclerotinia Stem Rot (SSR) disease. Here, a GWAS study in Canadian soybeans identified potential marker-trait associations and candidate genes, paving the way for more efficient breeding methods for SSR. Sclerotinia stem rot (SSR), caused by the fungal pathogen Sclerotinia sclerotiorum, is one of the most important diseases leading to significant soybean yield losses in Canada and worldwide. Developing soybean cultivars that are genetically resistant to the disease is the most inexpensive and reliable method to control the disease. However, breeding for resistance is hampered by the highly complex nature of genetic resistance to SSR in soybean. This study sought to understand the genetic basis underlying SSR resistance particularly in soybean grown in Canada. Consequently, a panel of 193 genotypes was assembled based on maturity group and genetic diversity as representative of Canadian soybean cultivars. Plants were inoculated and screened for SSR resistance in controlled environments, where variation for SSR phenotypic response was observed. The panel was also genotyped via genotyping-by-sequencing and the resulting genotypic data were imputed using BEAGLE v5 leading to a catalogue of 417 K SNPs. Through genome-wide association analyses (GWAS) using FarmCPU method with threshold of FDR-adjusted p-values < 0.1, we identified significant SNPs on chromosomes 2 and 9 with allele effects of 16.1 and 14.3, respectively. Further analysis identified three potential candidate genes linked to SSR disease resistance within a 100 Kb window surrounding each of the peak SNPs. Our results will be important in developing molecular markers that can speed up the breeding for SSR resistance in Canadian grown soybean.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Genetics","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s00122-024-04708-8","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Key message: Developing genetically resistant soybean cultivars is key in controlling the destructive Sclerotinia Stem Rot (SSR) disease. Here, a GWAS study in Canadian soybeans identified potential marker-trait associations and candidate genes, paving the way for more efficient breeding methods for SSR. Sclerotinia stem rot (SSR), caused by the fungal pathogen Sclerotinia sclerotiorum, is one of the most important diseases leading to significant soybean yield losses in Canada and worldwide. Developing soybean cultivars that are genetically resistant to the disease is the most inexpensive and reliable method to control the disease. However, breeding for resistance is hampered by the highly complex nature of genetic resistance to SSR in soybean. This study sought to understand the genetic basis underlying SSR resistance particularly in soybean grown in Canada. Consequently, a panel of 193 genotypes was assembled based on maturity group and genetic diversity as representative of Canadian soybean cultivars. Plants were inoculated and screened for SSR resistance in controlled environments, where variation for SSR phenotypic response was observed. The panel was also genotyped via genotyping-by-sequencing and the resulting genotypic data were imputed using BEAGLE v5 leading to a catalogue of 417 K SNPs. Through genome-wide association analyses (GWAS) using FarmCPU method with threshold of FDR-adjusted p-values < 0.1, we identified significant SNPs on chromosomes 2 and 9 with allele effects of 16.1 and 14.3, respectively. Further analysis identified three potential candidate genes linked to SSR disease resistance within a 100 Kb window surrounding each of the peak SNPs. Our results will be important in developing molecular markers that can speed up the breeding for SSR resistance in Canadian grown soybean.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
加拿大大豆种质群对硬核菌茎腐病部分抗性的遗传多样性和全基因组关联研究。
关键信息:开发具有抗性基因的大豆栽培品种是控制具有破坏性的大豆茎腐病(SSR)的关键。在此,一项针对加拿大大豆的 GWAS 研究确定了潜在的标记-性状关联和候选基因,为更有效的 SSR 育种方法铺平了道路。由真菌病原体 Sclerotinia sclerotiorum 引起的茎腐病(SSR)是导致加拿大和全世界大豆产量大幅下降的最重要病害之一。培育具有抗病基因的大豆栽培品种是控制这种病害的最廉价、最可靠的方法。然而,由于大豆对 SSR 的遗传抗性非常复杂,抗性育种受到阻碍。本研究试图了解 SSR 抗性的遗传基础,尤其是加拿大大豆的 SSR 抗性。因此,根据加拿大大豆栽培品种的成熟度组和遗传多样性,组建了一个由 193 个基因型组成的小组。在受控环境中对植物进行接种并筛选 SSR 抗性,观察 SSR 表型反应的变化。此外,还通过基因分型测序对面板进行了基因分型,并使用 BEAGLE v5 对由此产生的基因型数据进行了估算,从而得到了 417 K SNPs 的目录。通过使用 FarmCPU 方法进行全基因组关联分析(GWAS),以 FDR 调整后的 p 值为阈值
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.60
自引率
7.40%
发文量
241
审稿时长
2.3 months
期刊介绍: Theoretical and Applied Genetics publishes original research and review articles in all key areas of modern plant genetics, plant genomics and plant biotechnology. All work needs to have a clear genetic component and significant impact on plant breeding. Theoretical considerations are only accepted in combination with new experimental data and/or if they indicate a relevant application in plant genetics or breeding. Emphasizing the practical, the journal focuses on research into leading crop plants and articles presenting innovative approaches.
期刊最新文献
Leveraging genomic prediction to surpass current yield gains in spring barley. Fine mapping of QGPC.caas-7AL for grain protein content in bread wheat. Genetic loci associated with sorghum drought tolerance in multiple environments and their sensitivity to environmental covariables. Correction to: Identification and development of functional markers for purple grain genes in durum wheat (Triticum durum Desf.). Correction to: Identification and map‑based cloning of an EMS‑induced mutation in wheat gene TaSP1 related to spike architecture.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1