White matter damage and degeneration in traumatic brain injury.

IF 14.6 1区 医学 Q1 NEUROSCIENCES Trends in Neurosciences Pub Date : 2024-09-01 Epub Date: 2024-08-10 DOI:10.1016/j.tins.2024.07.003
Regina C Armstrong, Genevieve M Sullivan, Daniel P Perl, Jessica D Rosarda, Kryslaine L Radomski
{"title":"White matter damage and degeneration in traumatic brain injury.","authors":"Regina C Armstrong, Genevieve M Sullivan, Daniel P Perl, Jessica D Rosarda, Kryslaine L Radomski","doi":"10.1016/j.tins.2024.07.003","DOIUrl":null,"url":null,"abstract":"<p><p>Traumatic brain injury (TBI) is a complex condition that can resolve over time but all too often leads to persistent symptoms, and the risk of poor patient outcomes increases with aging. TBI damages neurons and long axons within white matter tracts that are critical for communication between brain regions; this causes slowed information processing and neuronal circuit dysfunction. This review focuses on white matter injury after TBI and the multifactorial processes that underlie white matter damage, potential for recovery, and progression of degeneration. A multiscale perspective across clinical and preclinical advances is presented to encourage interdisciplinary insights from whole-brain neuroimaging of white matter tracts down to cellular and molecular responses of axons, myelin, and glial cells within white matter tissue.</p>","PeriodicalId":23325,"journal":{"name":"Trends in Neurosciences","volume":null,"pages":null},"PeriodicalIF":14.6000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Neurosciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.tins.2024.07.003","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Traumatic brain injury (TBI) is a complex condition that can resolve over time but all too often leads to persistent symptoms, and the risk of poor patient outcomes increases with aging. TBI damages neurons and long axons within white matter tracts that are critical for communication between brain regions; this causes slowed information processing and neuronal circuit dysfunction. This review focuses on white matter injury after TBI and the multifactorial processes that underlie white matter damage, potential for recovery, and progression of degeneration. A multiscale perspective across clinical and preclinical advances is presented to encourage interdisciplinary insights from whole-brain neuroimaging of white matter tracts down to cellular and molecular responses of axons, myelin, and glial cells within white matter tissue.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
脑外伤导致的白质损伤和退化。
创伤性脑损伤(TBI)是一种复杂的疾病,可以随着时间的推移而缓解,但往往会导致症状持续存在,而且随着年龄的增长,患者出现不良后果的风险也会增加。创伤性脑损伤会损伤白质束内的神经元和长轴突,而白质束对于脑区之间的交流至关重要;这会导致信息处理速度减慢和神经元回路功能障碍。本综述将重点关注创伤后白质损伤,以及造成白质损伤、恢复潜力和退化进展的多因素过程。文章从临床和临床前研究进展的多尺度视角出发,从白质束的全脑神经成像到白质组织内轴突、髓鞘和胶质细胞的细胞和分子反应,提出了跨学科的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Trends in Neurosciences
Trends in Neurosciences 医学-神经科学
CiteScore
26.50
自引率
1.30%
发文量
123
审稿时长
6-12 weeks
期刊介绍: For over four decades, Trends in Neurosciences (TINS) has been a prominent source of inspiring reviews and commentaries across all disciplines of neuroscience. TINS is a monthly, peer-reviewed journal, and its articles are curated by the Editor and authored by leading researchers in their respective fields. The journal communicates exciting advances in brain research, serves as a voice for the global neuroscience community, and highlights the contribution of neuroscientific research to medicine and society.
期刊最新文献
The claustrum and synchronized brain states. Dopaminergic circuits controlling threat and safety learning. Principles of intensive human neuroimaging. Retinal ganglion cell circuits and glial interactions in humans and mice. CAMs in command: aging brain macrophages fine-tune stroke immune responses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1