Physalis floridana suppresses the expression of trehalase gene HvTREs in Henosepilachna vigintioctopunctata (Coleoptera: Coccinellidae) for defense against herbivorous insects
Xian-Zhong Wang, Si-Jing Wan, Bin-Er He, Shuang-Le Wang, Tian-Wen Wang, Liu-He Yu, Shi-Gui Wang, Hui-Zhong Wang, Bin Tang, Jiang-Jie Lu
{"title":"Physalis floridana suppresses the expression of trehalase gene HvTREs in Henosepilachna vigintioctopunctata (Coleoptera: Coccinellidae) for defense against herbivorous insects","authors":"Xian-Zhong Wang, Si-Jing Wan, Bin-Er He, Shuang-Le Wang, Tian-Wen Wang, Liu-He Yu, Shi-Gui Wang, Hui-Zhong Wang, Bin Tang, Jiang-Jie Lu","doi":"10.1007/s10340-024-01826-6","DOIUrl":null,"url":null,"abstract":"<p>Plants use various secondary chemicals in their chemical defense against herbivores. While botanical insecticides are crucial for reducing the reliance on chemical pesticides, the development of plant-derived insecticides remains limited. In this study, we fed <i>Henosepilachna vigintioctopunctata</i> with three different host plants (<i>Solanum nigrum</i>, <i>Solanum tuberosum</i>, and <i>Physalis floridana</i>) and observed that feeding on <i>P. floridana</i> led to changes in the body size and a significantly high mortality rate. Through transcriptome analysis, it was found that the trehalose metabolism pathway of <i>H. vigintioctopunctata</i> changed significantly under different host feeding conditions, especially since the expression level of the trehalase gene was extremely different. We subsequently identified eight transcripts of <i>HvTREs</i> and analyzed their evolution and structure. Among them, significant differences are observed in the relative expression levels of <i>HvTRE1-5</i> in <i>H. vigintioctopunctata</i> after the fourth instar and were affected by different plant diets. Compared with the natural host<i> S. nigrum</i>, the larvae that fed on <i>P. floridana</i> significantly reduced the contents of trehalose, glucose and glycogen and significantly affected the trehalase activity. Knockdown of <i>HvTRE1-5</i> by RNAi increased mortality at the <i>H. vigintioctopunctata</i> prepupation stage, suggesting that <i>HvTRE1-5</i> is important for <i>H. vigintioctopunctata</i> pupation. This study provides new insights into developing of green control methods for <i>H. vigintioctopunctata</i> and offers a valuable example for understanding the interaction between host plants and herbivorous insects.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":"1 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pest Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10340-024-01826-6","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Plants use various secondary chemicals in their chemical defense against herbivores. While botanical insecticides are crucial for reducing the reliance on chemical pesticides, the development of plant-derived insecticides remains limited. In this study, we fed Henosepilachna vigintioctopunctata with three different host plants (Solanum nigrum, Solanum tuberosum, and Physalis floridana) and observed that feeding on P. floridana led to changes in the body size and a significantly high mortality rate. Through transcriptome analysis, it was found that the trehalose metabolism pathway of H. vigintioctopunctata changed significantly under different host feeding conditions, especially since the expression level of the trehalase gene was extremely different. We subsequently identified eight transcripts of HvTREs and analyzed their evolution and structure. Among them, significant differences are observed in the relative expression levels of HvTRE1-5 in H. vigintioctopunctata after the fourth instar and were affected by different plant diets. Compared with the natural host S. nigrum, the larvae that fed on P. floridana significantly reduced the contents of trehalose, glucose and glycogen and significantly affected the trehalase activity. Knockdown of HvTRE1-5 by RNAi increased mortality at the H. vigintioctopunctata prepupation stage, suggesting that HvTRE1-5 is important for H. vigintioctopunctata pupation. This study provides new insights into developing of green control methods for H. vigintioctopunctata and offers a valuable example for understanding the interaction between host plants and herbivorous insects.
期刊介绍:
Journal of Pest Science publishes high-quality papers on all aspects of pest science in agriculture, horticulture (including viticulture), forestry, urban pests, and stored products research, including health and safety issues.
Journal of Pest Science reports on advances in control of pests and animal vectors of diseases, the biology, ethology and ecology of pests and their antagonists, and the use of other beneficial organisms in pest control. The journal covers all noxious or damaging groups of animals, including arthropods, nematodes, molluscs, and vertebrates.
Journal of Pest Science devotes special attention to emerging and innovative pest control strategies, including the side effects of such approaches on non-target organisms, for example natural enemies and pollinators, and the implementation of these strategies in integrated pest management.
Journal of Pest Science also publishes papers on the management of agro- and forest ecosystems where this is relevant to pest control. Papers on important methodological developments relevant for pest control will be considered as well.