Ziyi Zhou , Long Cheng , Min Yang , Lichao Wang , WeiJie Chen , Jian Gong , Jie Zou
{"title":"Analysis of passenger perception heterogeneity and differentiated service strategy for air-rail intermodal travel","authors":"Ziyi Zhou , Long Cheng , Min Yang , Lichao Wang , WeiJie Chen , Jian Gong , Jie Zou","doi":"10.1016/j.tbs.2024.100872","DOIUrl":null,"url":null,"abstract":"<div><p>Air-rail intermodal services (ARISs) represent a highly promising multimodal solution within the transportation sector. Nonetheless, various uncertainties and challenges persist across multiple dimensions of air-rail interline travel, with discrepancies in passenger perceptions being a notable aspect. In an effort to pinpoint the pivotal factors contributing to these disparities among distinct passenger profiles, this study employs the Structural Equation Modeling-Multiple Indicator Multiple Cause-Artificial Neural Network (SEM-MIMIC-ANN) methodology. This approach explores the impact of numerous attributes on passenger perceptions in the context of air-rail intermodal travel, leveraging questionnaire data gathered from Shijiazhuang multimodal passengers. Furthermore, the study utilizes the Classification and Regression Tree (CART) decision tree algorithm to categorize actual passengers into distinct characteristic groups. Subsequently, the perception levels of these diverse passenger groups are quantified through the calculation of comprehensive evaluation function values. In conclusion, taking into account the real-world conditions of air-rail interline travel, this research formulates a tailored service strategy aimed at enhancing the overall passenger experience.</p></div>","PeriodicalId":51534,"journal":{"name":"Travel Behaviour and Society","volume":"37 ","pages":"Article 100872"},"PeriodicalIF":5.1000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Travel Behaviour and Society","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214367X24001352","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0
Abstract
Air-rail intermodal services (ARISs) represent a highly promising multimodal solution within the transportation sector. Nonetheless, various uncertainties and challenges persist across multiple dimensions of air-rail interline travel, with discrepancies in passenger perceptions being a notable aspect. In an effort to pinpoint the pivotal factors contributing to these disparities among distinct passenger profiles, this study employs the Structural Equation Modeling-Multiple Indicator Multiple Cause-Artificial Neural Network (SEM-MIMIC-ANN) methodology. This approach explores the impact of numerous attributes on passenger perceptions in the context of air-rail intermodal travel, leveraging questionnaire data gathered from Shijiazhuang multimodal passengers. Furthermore, the study utilizes the Classification and Regression Tree (CART) decision tree algorithm to categorize actual passengers into distinct characteristic groups. Subsequently, the perception levels of these diverse passenger groups are quantified through the calculation of comprehensive evaluation function values. In conclusion, taking into account the real-world conditions of air-rail interline travel, this research formulates a tailored service strategy aimed at enhancing the overall passenger experience.
期刊介绍:
Travel Behaviour and Society is an interdisciplinary journal publishing high-quality original papers which report leading edge research in theories, methodologies and applications concerning transportation issues and challenges which involve the social and spatial dimensions. In particular, it provides a discussion forum for major research in travel behaviour, transportation infrastructure, transportation and environmental issues, mobility and social sustainability, transportation geographic information systems (TGIS), transportation and quality of life, transportation data collection and analysis, etc.