{"title":"Solubility of supercritical CO2 in polystyrene","authors":"","doi":"10.1016/j.supflu.2024.106374","DOIUrl":null,"url":null,"abstract":"<div><p>Expanded polystyrene (ePS) plays an important role in the food packaging industry. However, the foaming process is environmentally unfriendly. A sustainable alternative is dissolving supercritical CO<sub>2</sub> (scCO<sub>2</sub>) in the polystyrene (PS) matrix. Most studies so far were performed at temperatures above the PS glass transition temperature; however, a more general temperature window is desirable. In this work, the solubility of scCO<sub>2</sub> in polystyrene was measured at 323 K, 343 K, 363 K and 383 K and pressure up to 130 bar using a magnetic suspension balance (MSB). It was concluded that the solubility of CO<sub>2</sub> in PS decreases with temperature and increases with pressure. The Sanchez-Lacombe Equation of State was utilized to estimate the degree of swelling. The model developed was able to derive the experimentally determined solubilities after correction for the swelling. The interaction parameter, k<sub>12</sub>, turned out to be only a function of temperature. With these results the solubility and swelling of PS in scCO<sub>2</sub> can be more accurately assessed for different temperatures and pressures.</p></div>","PeriodicalId":17078,"journal":{"name":"Journal of Supercritical Fluids","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0896844624002092/pdfft?md5=216ec0599b69d6363ae8609ef674a44d&pid=1-s2.0-S0896844624002092-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Supercritical Fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0896844624002092","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Expanded polystyrene (ePS) plays an important role in the food packaging industry. However, the foaming process is environmentally unfriendly. A sustainable alternative is dissolving supercritical CO2 (scCO2) in the polystyrene (PS) matrix. Most studies so far were performed at temperatures above the PS glass transition temperature; however, a more general temperature window is desirable. In this work, the solubility of scCO2 in polystyrene was measured at 323 K, 343 K, 363 K and 383 K and pressure up to 130 bar using a magnetic suspension balance (MSB). It was concluded that the solubility of CO2 in PS decreases with temperature and increases with pressure. The Sanchez-Lacombe Equation of State was utilized to estimate the degree of swelling. The model developed was able to derive the experimentally determined solubilities after correction for the swelling. The interaction parameter, k12, turned out to be only a function of temperature. With these results the solubility and swelling of PS in scCO2 can be more accurately assessed for different temperatures and pressures.
期刊介绍:
The Journal of Supercritical Fluids is an international journal devoted to the fundamental and applied aspects of supercritical fluids and processes. Its aim is to provide a focused platform for academic and industrial researchers to report their findings and to have ready access to the advances in this rapidly growing field. Its coverage is multidisciplinary and includes both basic and applied topics.
Thermodynamics and phase equilibria, reaction kinetics and rate processes, thermal and transport properties, and all topics related to processing such as separations (extraction, fractionation, purification, chromatography) nucleation and impregnation are within the scope. Accounts of specific engineering applications such as those encountered in food, fuel, natural products, minerals, pharmaceuticals and polymer industries are included. Topics related to high pressure equipment design, analytical techniques, sensors, and process control methodologies are also within the scope of the journal.