Jun Fei , Tianchen Li , Ruifang Wang , Xiangnan Sheng , Yuzhuo Wei , Shiming Zhang , Yusi Che , Jilin He
{"title":"Study of difference in reaction and properties of molybdenum powders along hydrogen flow in hydrogen reduction of molybdenum oxides process","authors":"Jun Fei , Tianchen Li , Ruifang Wang , Xiangnan Sheng , Yuzhuo Wei , Shiming Zhang , Yusi Che , Jilin He","doi":"10.1016/j.ijrmhm.2024.106836","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigated the effect of water vapor partial pressure variations along the hydrogen flow direction on the phase transformation of molybdenum oxide (MoO<sub>x</sub>) and the properties of resulting molybdenum (Mo) powder. The results indicated that the reduction process of MoO<sub>3</sub> → MoO<sub>2</sub> → Mo exhibited variations in particle size, oxygen content, and morphology along the hydrogen flow directions. In both the first-stage and second-stage reduction processes, the reduction rates decreased by 1.7%/cm and 2.6%/cm at minimum hydrogen flow along the direction of hydrogen flow, respectively. And the average particle size of fully reduced Mo powder increased from 1.23 μm to 1.61 μm, whereas its oxygen content decreased from 1400 ppm to 1100 ppm. Besides, the increase in the hydrogen flow rate leads to reduced variations in reduction rates, average particle size, and oxygen content along the hydrogen flow direction. These findings lay the theoretical foundation for the industrial production and preparation of high-quality Mo powder.</p></div>","PeriodicalId":14216,"journal":{"name":"International Journal of Refractory Metals & Hard Materials","volume":"124 ","pages":"Article 106836"},"PeriodicalIF":4.2000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Refractory Metals & Hard Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263436824002841","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigated the effect of water vapor partial pressure variations along the hydrogen flow direction on the phase transformation of molybdenum oxide (MoOx) and the properties of resulting molybdenum (Mo) powder. The results indicated that the reduction process of MoO3 → MoO2 → Mo exhibited variations in particle size, oxygen content, and morphology along the hydrogen flow directions. In both the first-stage and second-stage reduction processes, the reduction rates decreased by 1.7%/cm and 2.6%/cm at minimum hydrogen flow along the direction of hydrogen flow, respectively. And the average particle size of fully reduced Mo powder increased from 1.23 μm to 1.61 μm, whereas its oxygen content decreased from 1400 ppm to 1100 ppm. Besides, the increase in the hydrogen flow rate leads to reduced variations in reduction rates, average particle size, and oxygen content along the hydrogen flow direction. These findings lay the theoretical foundation for the industrial production and preparation of high-quality Mo powder.
期刊介绍:
The International Journal of Refractory Metals and Hard Materials (IJRMHM) publishes original research articles concerned with all aspects of refractory metals and hard materials. Refractory metals are defined as metals with melting points higher than 1800 °C. These are tungsten, molybdenum, chromium, tantalum, niobium, hafnium, and rhenium, as well as many compounds and alloys based thereupon. Hard materials that are included in the scope of this journal are defined as materials with hardness values higher than 1000 kg/mm2, primarily intended for applications as manufacturing tools or wear resistant components in mechanical systems. Thus they encompass carbides, nitrides and borides of metals, and related compounds. A special focus of this journal is put on the family of hardmetals, which is also known as cemented tungsten carbide, and cermets which are based on titanium carbide and carbonitrides with or without a metal binder. Ceramics and superhard materials including diamond and cubic boron nitride may also be accepted provided the subject material is presented as hard materials as defined above.