Jian Wang, Haitao Hei, Yonggang Zheng, Hongwu Zhang, Hongfei Ye
{"title":"Five-Site Water Models for Ice and Liquid Water Generated by a Series-Parallel Machine Learning Strategy.","authors":"Jian Wang, Haitao Hei, Yonggang Zheng, Hongwu Zhang, Hongfei Ye","doi":"10.1021/acs.jctc.4c00440","DOIUrl":null,"url":null,"abstract":"<p><p>Icing, a common natural phenomenon, always originates from a molecule. Molecular simulation is crucial for understanding the relevant process but still faces a great challenge in obtaining a uniform and accurate description of ice and liquid water with limited model parameters. Here, we propose a series-parallel machine learning (ML) approach consisting of a classification back-propagation neural network (BPNN), parallel regression BPNNs, and a genetic algorithm to establish conventional TIP5P-BG and temperature-dependent TIP5P-BGT models. The established water models exhibit a comprehensive balance among the crucial physical properties (melting point, density, vaporization enthalpy, self-diffusion coefficient, and viscosity) with mean absolute percentage errors of 2.65 and 2.40%, respectively, and excellent predictive performance on the related properties of liquid water. For ice, the simulation results on the critical nucleus size and growth rate are in good accordance with experiments. This work offers a powerful molecular model for phase transition and icing in nanoconfinement and a construction strategy for a complex molecular model in the extreme case.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.4c00440","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/12 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Icing, a common natural phenomenon, always originates from a molecule. Molecular simulation is crucial for understanding the relevant process but still faces a great challenge in obtaining a uniform and accurate description of ice and liquid water with limited model parameters. Here, we propose a series-parallel machine learning (ML) approach consisting of a classification back-propagation neural network (BPNN), parallel regression BPNNs, and a genetic algorithm to establish conventional TIP5P-BG and temperature-dependent TIP5P-BGT models. The established water models exhibit a comprehensive balance among the crucial physical properties (melting point, density, vaporization enthalpy, self-diffusion coefficient, and viscosity) with mean absolute percentage errors of 2.65 and 2.40%, respectively, and excellent predictive performance on the related properties of liquid water. For ice, the simulation results on the critical nucleus size and growth rate are in good accordance with experiments. This work offers a powerful molecular model for phase transition and icing in nanoconfinement and a construction strategy for a complex molecular model in the extreme case.
期刊介绍:
The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.