Five-Site Water Models for Ice and Liquid Water Generated by a Series-Parallel Machine Learning Strategy.

IF 5.7 1区 化学 Q2 CHEMISTRY, PHYSICAL Journal of Chemical Theory and Computation Pub Date : 2024-09-10 Epub Date: 2024-08-12 DOI:10.1021/acs.jctc.4c00440
Jian Wang, Haitao Hei, Yonggang Zheng, Hongwu Zhang, Hongfei Ye
{"title":"Five-Site Water Models for Ice and Liquid Water Generated by a Series-Parallel Machine Learning Strategy.","authors":"Jian Wang, Haitao Hei, Yonggang Zheng, Hongwu Zhang, Hongfei Ye","doi":"10.1021/acs.jctc.4c00440","DOIUrl":null,"url":null,"abstract":"<p><p>Icing, a common natural phenomenon, always originates from a molecule. Molecular simulation is crucial for understanding the relevant process but still faces a great challenge in obtaining a uniform and accurate description of ice and liquid water with limited model parameters. Here, we propose a series-parallel machine learning (ML) approach consisting of a classification back-propagation neural network (BPNN), parallel regression BPNNs, and a genetic algorithm to establish conventional TIP5P-BG and temperature-dependent TIP5P-BGT models. The established water models exhibit a comprehensive balance among the crucial physical properties (melting point, density, vaporization enthalpy, self-diffusion coefficient, and viscosity) with mean absolute percentage errors of 2.65 and 2.40%, respectively, and excellent predictive performance on the related properties of liquid water. For ice, the simulation results on the critical nucleus size and growth rate are in good accordance with experiments. This work offers a powerful molecular model for phase transition and icing in nanoconfinement and a construction strategy for a complex molecular model in the extreme case.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.4c00440","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/12 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Icing, a common natural phenomenon, always originates from a molecule. Molecular simulation is crucial for understanding the relevant process but still faces a great challenge in obtaining a uniform and accurate description of ice and liquid water with limited model parameters. Here, we propose a series-parallel machine learning (ML) approach consisting of a classification back-propagation neural network (BPNN), parallel regression BPNNs, and a genetic algorithm to establish conventional TIP5P-BG and temperature-dependent TIP5P-BGT models. The established water models exhibit a comprehensive balance among the crucial physical properties (melting point, density, vaporization enthalpy, self-diffusion coefficient, and viscosity) with mean absolute percentage errors of 2.65 and 2.40%, respectively, and excellent predictive performance on the related properties of liquid water. For ice, the simulation results on the critical nucleus size and growth rate are in good accordance with experiments. This work offers a powerful molecular model for phase transition and icing in nanoconfinement and a construction strategy for a complex molecular model in the extreme case.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过串并联机器学习策略生成冰水和液态水的五点水模型。
结冰是一种常见的自然现象,总是源于分子。分子模拟对理解相关过程至关重要,但要在有限的模型参数下获得对冰和液态水统一而准确的描述仍面临巨大挑战。在此,我们提出了一种由分类反向传播神经网络(BPNN)、并行回归 BPNN 和遗传算法组成的串并联机器学习(ML)方法,以建立传统的 TIP5P-BG 和温度相关的 TIP5P-BGT 模型。所建立的水模型全面平衡了关键物理性质(熔点、密度、汽化焓、自扩散系数和粘度),平均绝对百分比误差分别为 2.65% 和 2.40%,对液态水的相关性质具有出色的预测性能。对于冰,临界核大小和生长速度的模拟结果与实验结果吻合。这项工作为纳米融合中的相变和结冰提供了一个强大的分子模型,并为极端情况下复杂分子模型的构建提供了一种策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Chemical Theory and Computation
Journal of Chemical Theory and Computation 化学-物理:原子、分子和化学物理
CiteScore
9.90
自引率
16.40%
发文量
568
审稿时长
1 months
期刊介绍: The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.
期刊最新文献
Electron-Spin Relaxation in Boron-Doped Graphene Nanoribbons. Does the Traditional Band Picture Correctly Describe the Electronic Structure of n-Doped Conjugated Polymers? A TD-DFT and Natural Transition Orbital Study. Determining the N-Representability of a Reduced Density Matrix via Unitary Evolution and Stochastic Sampling. Host-Guest Binding Free Energies à la Carte: An Automated OneOPES Protocol. How Sophisticated Are Neural Networks Needed to Predict Long-Term Nonadiabatic Dynamics?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1