Host-Guest Binding Free Energies à la Carte: An Automated OneOPES Protocol.

IF 5.7 1区 化学 Q2 CHEMISTRY, PHYSICAL Journal of Chemical Theory and Computation Pub Date : 2024-11-14 DOI:10.1021/acs.jctc.4c01112
Pedro Febrer Martinez, Valerio Rizzi, Simone Aureli, Francesco Luigi Gervasio
{"title":"Host-Guest Binding Free Energies à la Carte: An Automated OneOPES Protocol.","authors":"Pedro Febrer Martinez, Valerio Rizzi, Simone Aureli, Francesco Luigi Gervasio","doi":"10.1021/acs.jctc.4c01112","DOIUrl":null,"url":null,"abstract":"<p><p>Estimating absolute binding free energies from molecular simulations is a key step in computer-aided drug design pipelines, but the agreement between computational results and experiments is still very inconsistent. Both the accuracy of the computational model and the quality of the statistical sampling contribute to this discrepancy, yet disentangling the two remains a challenge. In this study, we present an automated protocol based on OneOPES, an enhanced sampling method that exploits replica exchange and can accelerate several collective variables to address the sampling problem. We apply this protocol to 37 host-guest systems. The simplicity of setting up the simulations and producing well-converged binding free energy estimates without the need to optimize simulation parameters provides a reliable solution to the sampling problem. This, in turn, allows for a systematic force field comparison and ranking according to the correlation between simulations and experiments, which can inform the selection of an appropriate model. The protocol can be readily adapted to test more force field combinations and study more complex protein-ligand systems, where the choice of an appropriate physical model is often based on heuristic considerations rather than systematic optimization.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.4c01112","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Estimating absolute binding free energies from molecular simulations is a key step in computer-aided drug design pipelines, but the agreement between computational results and experiments is still very inconsistent. Both the accuracy of the computational model and the quality of the statistical sampling contribute to this discrepancy, yet disentangling the two remains a challenge. In this study, we present an automated protocol based on OneOPES, an enhanced sampling method that exploits replica exchange and can accelerate several collective variables to address the sampling problem. We apply this protocol to 37 host-guest systems. The simplicity of setting up the simulations and producing well-converged binding free energy estimates without the need to optimize simulation parameters provides a reliable solution to the sampling problem. This, in turn, allows for a systematic force field comparison and ranking according to the correlation between simulations and experiments, which can inform the selection of an appropriate model. The protocol can be readily adapted to test more force field combinations and study more complex protein-ligand systems, where the choice of an appropriate physical model is often based on heuristic considerations rather than systematic optimization.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
主客结合自由能自选:自动 OneOPES 协议
从分子模拟中估算绝对结合自由能是计算机辅助药物设计流程中的关键一步,但计算结果与实验结果之间的一致性仍然很不一致。计算模型的准确性和统计采样的质量都是造成这种差异的原因,但如何将二者区分开来仍是一项挑战。在本研究中,我们提出了一种基于 OneOPES 的自动协议,这是一种增强型采样方法,它利用复制交换并能加速多个集体变量来解决采样问题。我们将该协议应用于 37 个主-客系统。无需优化仿真参数,就能简单地设置仿真并产生良好融合的结合自由能估计值,为取样问题提供了可靠的解决方案。这反过来又允许根据模拟和实验之间的相关性进行系统的力场比较和排序,从而为选择合适的模型提供信息。该方案可随时进行调整,以测试更多的力场组合和研究更复杂的蛋白质配体系统,在这种情况下,选择合适的物理模型往往是基于启发式考虑,而不是系统优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Chemical Theory and Computation
Journal of Chemical Theory and Computation 化学-物理:原子、分子和化学物理
CiteScore
9.90
自引率
16.40%
发文量
568
审稿时长
1 months
期刊介绍: The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.
期刊最新文献
Electron-Spin Relaxation in Boron-Doped Graphene Nanoribbons. Does the Traditional Band Picture Correctly Describe the Electronic Structure of n-Doped Conjugated Polymers? A TD-DFT and Natural Transition Orbital Study. Determining the N-Representability of a Reduced Density Matrix via Unitary Evolution and Stochastic Sampling. Host-Guest Binding Free Energies à la Carte: An Automated OneOPES Protocol. How Sophisticated Are Neural Networks Needed to Predict Long-Term Nonadiabatic Dynamics?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1