Synthesis of geometrically realistic and watertight neuronal ultrastructure manifolds for in silico modeling.

IF 6.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Briefings in bioinformatics Pub Date : 2024-07-25 DOI:10.1093/bib/bbae393
Marwan Abdellah, Alessandro Foni, Juan José García Cantero, Nadir Román Guerrero, Elvis Boci, Adrien Fleury, Jay S Coggan, Daniel Keller, Judit Planas, Jean-Denis Courcol, Georges Khazen
{"title":"Synthesis of geometrically realistic and watertight neuronal ultrastructure manifolds for in silico modeling.","authors":"Marwan Abdellah, Alessandro Foni, Juan José García Cantero, Nadir Román Guerrero, Elvis Boci, Adrien Fleury, Jay S Coggan, Daniel Keller, Judit Planas, Jean-Denis Courcol, Georges Khazen","doi":"10.1093/bib/bbae393","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding the intracellular dynamics of brain cells entails performing three-dimensional molecular simulations incorporating ultrastructural models that can capture cellular membrane geometries at nanometer scales. While there is an abundance of neuronal morphologies available online, e.g. from NeuroMorpho.Org, converting those fairly abstract point-and-diameter representations into geometrically realistic and simulation-ready, i.e. watertight, manifolds is challenging. Many neuronal mesh reconstruction methods have been proposed; however, their resulting meshes are either biologically unplausible or non-watertight. We present an effective and unconditionally robust method capable of generating geometrically realistic and watertight surface manifolds of spiny cortical neurons from their morphological descriptions. The robustness of our method is assessed based on a mixed dataset of cortical neurons with a wide variety of morphological classes. The implementation is seamlessly extended and applied to synthetic astrocytic morphologies that are also plausibly biological in detail. Resulting meshes are ultimately used to create volumetric meshes with tetrahedral domains to perform scalable in silico reaction-diffusion simulations for revealing cellular structure-function relationships. Availability and implementation: Our method is implemented in NeuroMorphoVis, a neuroscience-specific open source Blender add-on, making it freely accessible for neuroscience researchers.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":null,"pages":null},"PeriodicalIF":6.8000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11317524/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbae393","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the intracellular dynamics of brain cells entails performing three-dimensional molecular simulations incorporating ultrastructural models that can capture cellular membrane geometries at nanometer scales. While there is an abundance of neuronal morphologies available online, e.g. from NeuroMorpho.Org, converting those fairly abstract point-and-diameter representations into geometrically realistic and simulation-ready, i.e. watertight, manifolds is challenging. Many neuronal mesh reconstruction methods have been proposed; however, their resulting meshes are either biologically unplausible or non-watertight. We present an effective and unconditionally robust method capable of generating geometrically realistic and watertight surface manifolds of spiny cortical neurons from their morphological descriptions. The robustness of our method is assessed based on a mixed dataset of cortical neurons with a wide variety of morphological classes. The implementation is seamlessly extended and applied to synthetic astrocytic morphologies that are also plausibly biological in detail. Resulting meshes are ultimately used to create volumetric meshes with tetrahedral domains to perform scalable in silico reaction-diffusion simulations for revealing cellular structure-function relationships. Availability and implementation: Our method is implemented in NeuroMorphoVis, a neuroscience-specific open source Blender add-on, making it freely accessible for neuroscience researchers.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
为硅学建模合成几何逼真、无懈可击的神经元超微结构流形。
要了解脑细胞的胞内动力学,就必须结合能捕捉纳米尺度细胞膜几何形状的超微结构模型进行三维分子模拟。虽然网上(如 NeuroMorpho.Org)提供了大量神经元形态,但将这些相当抽象的点和直径表示法转换成几何上逼真的、可用于仿真的流形(即不漏水的流形)是一项挑战。已经有很多神经元网格重建方法被提出,但这些方法得到的网格要么在生物学上不合理,要么不防水。我们提出了一种有效且无条件稳健的方法,该方法能够根据刺状皮层神经元的形态描述生成几何逼真且不漏水的表面流形。我们的方法的鲁棒性是基于一个具有多种形态类别的皮层神经元混合数据集进行评估的。我们对该方法进行了无缝扩展,并将其应用于合成星形胶质细胞形态,这些形态在细节上也具有可信的生物特征。最终将利用生成的网格创建具有四面体域的体积网格,以执行可扩展的硅反应扩散模拟,从而揭示细胞结构与功能之间的关系。可用性和实施:我们的方法是在神经科学专用的开源 Blender 附加组件 NeuroMorphoVis 中实现的,因此神经科学研究人员可以免费使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Briefings in bioinformatics
Briefings in bioinformatics 生物-生化研究方法
CiteScore
13.20
自引率
13.70%
发文量
549
审稿时长
6 months
期刊介绍: Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data. The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.
期刊最新文献
TUnA: an uncertainty-aware transformer model for sequence-based protein-protein interaction prediction. scLEGA: an attention-based deep clustering method with a tendency for low expression of genes on single-cell RNA-seq data. CatLearning: highly accurate gene expression prediction from histone mark. Detecting novel cell type in single-cell chromatin accessibility data via open-set domain adaptation. Explorer: efficient DNA coding by De Bruijn graph toward arbitrary local and global biochemical constraints.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1