Peptide drugs have demonstrated enormous potential in treating a variety of diseases, yet toxicity prediction remains a significant challenge in drug development. Existing models for prediction of peptide toxicity largely rely on sequence information and often neglect the three-dimensional (3D) structures of peptides. This study introduced a novel model for short peptide toxicity prediction, named ToxGIN. The model utilizes Graph Isomorphism Network (GIN), integrating the underlying amino acid sequence composition and the 3D structures of peptides. ToxGIN comprises three primary modules: (i) Sequence processing module, converting peptide 3D structures and sequences into information of nodes and edges; (ii) Feature extraction module, utilizing GIN to learn discriminative features from nodes and edges; (iii) Classification module, employing a fully connected classifier for toxicity prediction. ToxGIN performed well on the independent test set with F1 score = 0.83, AUROC = 0.91, and Matthews correlation coefficient = 0.68, better than existing models for prediction of peptide toxicity. These results validated the effectiveness of integrating 3D structural information with sequence data using GIN for peptide toxicity prediction. The proposed ToxGIN and data can be freely accessible at https://github.com/cihebiyql/ToxGIN.
{"title":"ToxGIN: an In silico prediction model for peptide toxicity via graph isomorphism networks integrating peptide sequence and structure information.","authors":"Qiule Yu, Zhixing Zhang, Guixia Liu, Weihua Li, Yun Tang","doi":"10.1093/bib/bbae583","DOIUrl":"10.1093/bib/bbae583","url":null,"abstract":"<p><p>Peptide drugs have demonstrated enormous potential in treating a variety of diseases, yet toxicity prediction remains a significant challenge in drug development. Existing models for prediction of peptide toxicity largely rely on sequence information and often neglect the three-dimensional (3D) structures of peptides. This study introduced a novel model for short peptide toxicity prediction, named ToxGIN. The model utilizes Graph Isomorphism Network (GIN), integrating the underlying amino acid sequence composition and the 3D structures of peptides. ToxGIN comprises three primary modules: (i) Sequence processing module, converting peptide 3D structures and sequences into information of nodes and edges; (ii) Feature extraction module, utilizing GIN to learn discriminative features from nodes and edges; (iii) Classification module, employing a fully connected classifier for toxicity prediction. ToxGIN performed well on the independent test set with F1 score = 0.83, AUROC = 0.91, and Matthews correlation coefficient = 0.68, better than existing models for prediction of peptide toxicity. These results validated the effectiveness of integrating 3D structural information with sequence data using GIN for peptide toxicity prediction. The proposed ToxGIN and data can be freely accessible at https://github.com/cihebiyql/ToxGIN.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"25 6","pages":""},"PeriodicalIF":6.8,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11555482/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142614950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Single-cell DNA sequencing (scDNA-seq) has been widely used to unmask tumor copy number alterations (CNAs) at single-cell resolution. Despite that arm-level CNAs can be accurately detected from single-cell read counts, it is difficult to precisely identify focal CNAs as the read counts are featured with high dimensionality, high sparsity and low signal-to-noise ratio. This gives rise to a desperate demand for reconstructing high-quality scDNA-seq data. We develop a new method called scTCA for imputation and denoising of single-cell read counts, thus aiding in downstream analysis of both arm-level and focal CNAs. scTCA employs hybrid Transformer-CNN architectures to identify local and non-local correlations between genes for precise recovery of the read counts. Unlike conventional Transformers, the Transformer block in scTCA is a two-stage attention module containing a stepwise self-attention layer and a window Transformer, and can efficiently deal with the high-dimensional read counts data. We showcase the superior performance of scTCA through comparison with the state-of-the-arts on both synthetic and real datasets. The results indicate it is highly effective in imputation and denoising of scDNA-seq data.
{"title":"scTCA: a hybrid Transformer-CNN architecture for imputation and denoising of scDNA-seq data.","authors":"Zhenhua Yu, Furui Liu, Yang Li","doi":"10.1093/bib/bbae577","DOIUrl":"10.1093/bib/bbae577","url":null,"abstract":"<p><p>Single-cell DNA sequencing (scDNA-seq) has been widely used to unmask tumor copy number alterations (CNAs) at single-cell resolution. Despite that arm-level CNAs can be accurately detected from single-cell read counts, it is difficult to precisely identify focal CNAs as the read counts are featured with high dimensionality, high sparsity and low signal-to-noise ratio. This gives rise to a desperate demand for reconstructing high-quality scDNA-seq data. We develop a new method called scTCA for imputation and denoising of single-cell read counts, thus aiding in downstream analysis of both arm-level and focal CNAs. scTCA employs hybrid Transformer-CNN architectures to identify local and non-local correlations between genes for precise recovery of the read counts. Unlike conventional Transformers, the Transformer block in scTCA is a two-stage attention module containing a stepwise self-attention layer and a window Transformer, and can efficiently deal with the high-dimensional read counts data. We showcase the superior performance of scTCA through comparison with the state-of-the-arts on both synthetic and real datasets. The results indicate it is highly effective in imputation and denoising of scDNA-seq data.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"25 6","pages":""},"PeriodicalIF":6.8,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11551055/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142614940","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alterations in human microbial communities are intricately linked to the onset and progression of diseases. Identifying the key microbes driving these community changes is crucial, as they may serve as valuable biomarkers for disease prevention, diagnosis, and treatment. However, there remains a need for further research to develop effective methods for addressing this critical task. This is primarily because defining the driver microbe requires consideration not only of each microbe's individual contributions but also their interactions. This paper introduces a novel framework, called mbDriver, for identifying driver microbes based on microbiome abundance data collected at discrete time points. mbDriver comprises three main components: (i) data preprocessing of time-series abundance data using smoothing splines based on the negative binomial distribution, (ii) parameter estimation for the generalized Lotka-Volterra (gLV) model using regularized least squares, and (iii) quantification of each microbe's contribution to the community's steady state by manipulating the causal graph implied by gLV equations. The performance of nonparametric spline-based denoising and regularized least squares estimation is comprehensively evaluated on simulated datasets, demonstrating superiority over existing methods. Furthermore, the practical applicability and effectiveness of mbDriver are showcased using a dietary fiber intervention dataset and an ulcerative colitis dataset. Notably, driver microbes identified in the dietary fiber intervention dataset exhibit significant effects on the abundances of short-chain fatty acids, while those identified in the ulcerative colitis dataset show a significant correlation with metabolism-related pathways.
{"title":"mbDriver: identifying driver microbes in microbial communities based on time-series microbiome data.","authors":"Xiaoxiu Tan, Feng Xue, Chenhong Zhang, Tao Wang","doi":"10.1093/bib/bbae580","DOIUrl":"10.1093/bib/bbae580","url":null,"abstract":"<p><p>Alterations in human microbial communities are intricately linked to the onset and progression of diseases. Identifying the key microbes driving these community changes is crucial, as they may serve as valuable biomarkers for disease prevention, diagnosis, and treatment. However, there remains a need for further research to develop effective methods for addressing this critical task. This is primarily because defining the driver microbe requires consideration not only of each microbe's individual contributions but also their interactions. This paper introduces a novel framework, called mbDriver, for identifying driver microbes based on microbiome abundance data collected at discrete time points. mbDriver comprises three main components: (i) data preprocessing of time-series abundance data using smoothing splines based on the negative binomial distribution, (ii) parameter estimation for the generalized Lotka-Volterra (gLV) model using regularized least squares, and (iii) quantification of each microbe's contribution to the community's steady state by manipulating the causal graph implied by gLV equations. The performance of nonparametric spline-based denoising and regularized least squares estimation is comprehensively evaluated on simulated datasets, demonstrating superiority over existing methods. Furthermore, the practical applicability and effectiveness of mbDriver are showcased using a dietary fiber intervention dataset and an ulcerative colitis dataset. Notably, driver microbes identified in the dietary fiber intervention dataset exhibit significant effects on the abundances of short-chain fatty acids, while those identified in the ulcerative colitis dataset show a significant correlation with metabolism-related pathways.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"25 6","pages":""},"PeriodicalIF":6.8,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11551971/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142614863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Deciphering the underlying gene regulatory networks (GRNs) that govern early human embryogenesis is critical for understanding developmental mechanisms yet remains challenging due to limited sample availability and the inherent complexity of the biological processes involved. To address this, we developed InPheRNo-ChIP, a computational framework that integrates multimodal data, including RNA-seq, transcription factor (TF)-specific ChIP-seq, and phenotypic labels, to reconstruct phenotype-relevant GRNs associated with endoderm development. The core of this method is a probabilistic graphical model that models the simultaneous effect of TFs on their putative target genes to influence a particular phenotypic outcome. Unlike the majority of existing GRN inference methods that are agnostic to the phenotypic outcomes, InPheRNo-ChIP directly incorporates phenotypic information during GRN inference, enabling the distinction between lineage-specific and general regulatory interactions. We integrated data from three experimental studies and applied InPheRNo-ChIP to infer the GRN governing the differentiation of human embryonic stem cells into definitive endoderm. Benchmarking against a scRNA-seq CRISPRi study demonstrated InPheRNo-ChIP's ability to identify regulatory interactions involving endoderm markers FOXA2, SMAD2, and SOX17, outperforming other methods. This highlights the importance of incorporating the phenotypic context during network inference. Furthermore, an ablation study confirms the synergistic contribution of ChIP-seq, RNA-seq, and phenotypic data, highlighting the value of multimodal integration for accurate phenotype-relevant GRN reconstruction.
{"title":"Deciphering lineage-relevant gene regulatory networks during endoderm formation by InPheRNo-ChIP.","authors":"Chen Su, William A Pastor, Amin Emad","doi":"10.1093/bib/bbae592","DOIUrl":"10.1093/bib/bbae592","url":null,"abstract":"<p><p>Deciphering the underlying gene regulatory networks (GRNs) that govern early human embryogenesis is critical for understanding developmental mechanisms yet remains challenging due to limited sample availability and the inherent complexity of the biological processes involved. To address this, we developed InPheRNo-ChIP, a computational framework that integrates multimodal data, including RNA-seq, transcription factor (TF)-specific ChIP-seq, and phenotypic labels, to reconstruct phenotype-relevant GRNs associated with endoderm development. The core of this method is a probabilistic graphical model that models the simultaneous effect of TFs on their putative target genes to influence a particular phenotypic outcome. Unlike the majority of existing GRN inference methods that are agnostic to the phenotypic outcomes, InPheRNo-ChIP directly incorporates phenotypic information during GRN inference, enabling the distinction between lineage-specific and general regulatory interactions. We integrated data from three experimental studies and applied InPheRNo-ChIP to infer the GRN governing the differentiation of human embryonic stem cells into definitive endoderm. Benchmarking against a scRNA-seq CRISPRi study demonstrated InPheRNo-ChIP's ability to identify regulatory interactions involving endoderm markers FOXA2, SMAD2, and SOX17, outperforming other methods. This highlights the importance of incorporating the phenotypic context during network inference. Furthermore, an ablation study confirms the synergistic contribution of ChIP-seq, RNA-seq, and phenotypic data, highlighting the value of multimodal integration for accurate phenotype-relevant GRN reconstruction.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"25 6","pages":""},"PeriodicalIF":6.8,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11558691/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142614891","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
RNA sequencing is the gold-standard method to quantify transcriptomic changes between two conditions. The overwhelming majority of data analysis methods available are focused on polyadenylated RNA transcribed from single-copy genes and overlook transcripts from repeated sequences such as transposable elements (TEs). These self-autonomous genetic elements are increasingly studied, and specialized tools designed to handle multimapping sequencing reads are available. Transfer RNAs are transcribed by RNA polymerase III and are essential for protein translation. There is a need for integrated software that is able to analyze multiple types of RNA. Here, we present 3t-seq, a Snakemake pipeline for integrated differential expression analysis of transcripts from single-copy genes, TEs, and tRNA. 3t-seq produces an accessible report and easy-to-use results for downstream analysis starting from raw sequencing data and performing quality control, genome mapping, gene expression quantification, and statistical testing. It implements three methods to quantify TEs expression and one for tRNA genes. It provides an easy-to-configure method to manage software dependencies that lets the user focus on results. 3t-seq is released under MIT license and is available at https://github.com/boulardlab/3t-seq.
{"title":"3t-seq: automatic gene expression analysis of single-copy genes, transposable elements, and tRNAs from RNA-seq data.","authors":"Francesco Tabaro, Matthieu Boulard","doi":"10.1093/bib/bbae467","DOIUrl":"https://doi.org/10.1093/bib/bbae467","url":null,"abstract":"<p><p>RNA sequencing is the gold-standard method to quantify transcriptomic changes between two conditions. The overwhelming majority of data analysis methods available are focused on polyadenylated RNA transcribed from single-copy genes and overlook transcripts from repeated sequences such as transposable elements (TEs). These self-autonomous genetic elements are increasingly studied, and specialized tools designed to handle multimapping sequencing reads are available. Transfer RNAs are transcribed by RNA polymerase III and are essential for protein translation. There is a need for integrated software that is able to analyze multiple types of RNA. Here, we present 3t-seq, a Snakemake pipeline for integrated differential expression analysis of transcripts from single-copy genes, TEs, and tRNA. 3t-seq produces an accessible report and easy-to-use results for downstream analysis starting from raw sequencing data and performing quality control, genome mapping, gene expression quantification, and statistical testing. It implements three methods to quantify TEs expression and one for tRNA genes. It provides an easy-to-configure method to manage software dependencies that lets the user focus on results. 3t-seq is released under MIT license and is available at https://github.com/boulardlab/3t-seq.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"25 6","pages":""},"PeriodicalIF":6.8,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11424182/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142341931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Predicting associations between microbes and diseases opens up new avenues for developing diagnostic, preventive, and therapeutic strategies. Given that laboratory-based biological tests to verify these associations are often time-consuming and expensive, there is a critical need for innovative computational frameworks to predict new microbe-disease associations. In this work, we introduce a novel prediction algorithm called Predicting Human Disease-Microbe Associations using Cross-Domain Matrix Factorization (CMFHMDA). Initially, we calculate the composite similarity of diseases and the Gaussian interaction profile similarity of microbes. We then apply the Weighted K Nearest Known Neighbors (WKNKN) algorithm to refine the microbe-disease association matrix. Our CMFHMDA model is subsequently developed by integrating the network data of both microbes and diseases to predict potential associations. The key innovations of this method include using the WKNKN algorithm to preprocess missing values in the association matrix and incorporating cross-domain information from microbes and diseases into the CMFHMDA model. To validate CMFHMDA, we employed three different cross-validation techniques to evaluate the model's accuracy. The results indicate that the CMFHMDA model achieved Area Under the Receiver Operating Characteristic Curve scores of 0.9172, 0.8551, and 0.9351$pm $0.0052 in global Leave-One-Out Cross-Validation (LOOCV), local LOOCV, and five-fold CV, respectively. Furthermore, many predicted associations have been confirmed by published experimental studies, establishing CMFHMDA as an effective tool for predicting potential disease-associated microbes.
预测微生物与疾病之间的关联为开发诊断、预防和治疗策略开辟了新途径。鉴于验证这些关联的实验室生物测试往往耗时且昂贵,因此亟需创新的计算框架来预测新的微生物与疾病的关联。在这项工作中,我们介绍了一种名为 "利用跨域矩阵因式分解预测人类疾病-微生物关联"(CMFHMDA)的新型预测算法。首先,我们计算疾病的复合相似度和微生物的高斯交互轮廓相似度。然后,我们采用加权 K 最近已知邻居(WKNKN)算法来完善微生物-疾病关联矩阵。随后,通过整合微生物和疾病的网络数据,我们建立了 CMFHMDA 模型,以预测潜在的关联。该方法的主要创新点包括使用 WKNKN 算法预处理关联矩阵中的缺失值,以及将微生物和疾病的跨领域信息纳入 CMFHMDA 模型。为了验证 CMFHMDA,我们采用了三种不同的交叉验证技术来评估模型的准确性。结果表明,CMFHMDA模型在全局留空交叉验证(LOOCV)、局部留空交叉验证(LOOCV)和五倍交叉验证(5-fold CV)中的接收者工作特征曲线下面积(Area Under the Receiver Operating Characteristic Curve)得分分别为0.9172、0.8551和0.9351/pm $0.0052。此外,许多预测的关联已被已发表的实验研究证实,从而使 CMFHMDA 成为预测潜在疾病相关微生物的有效工具。
{"title":"CMFHMDA: a prediction framework for human disease-microbe associations based on cross-domain matrix factorization.","authors":"Jing Chen, Ran Tao, Yi Qiu, Qun Yuan","doi":"10.1093/bib/bbae481","DOIUrl":"https://doi.org/10.1093/bib/bbae481","url":null,"abstract":"<p><p>Predicting associations between microbes and diseases opens up new avenues for developing diagnostic, preventive, and therapeutic strategies. Given that laboratory-based biological tests to verify these associations are often time-consuming and expensive, there is a critical need for innovative computational frameworks to predict new microbe-disease associations. In this work, we introduce a novel prediction algorithm called Predicting Human Disease-Microbe Associations using Cross-Domain Matrix Factorization (CMFHMDA). Initially, we calculate the composite similarity of diseases and the Gaussian interaction profile similarity of microbes. We then apply the Weighted K Nearest Known Neighbors (WKNKN) algorithm to refine the microbe-disease association matrix. Our CMFHMDA model is subsequently developed by integrating the network data of both microbes and diseases to predict potential associations. The key innovations of this method include using the WKNKN algorithm to preprocess missing values in the association matrix and incorporating cross-domain information from microbes and diseases into the CMFHMDA model. To validate CMFHMDA, we employed three different cross-validation techniques to evaluate the model's accuracy. The results indicate that the CMFHMDA model achieved Area Under the Receiver Operating Characteristic Curve scores of 0.9172, 0.8551, and 0.9351$pm $0.0052 in global Leave-One-Out Cross-Validation (LOOCV), local LOOCV, and five-fold CV, respectively. Furthermore, many predicted associations have been confirmed by published experimental studies, establishing CMFHMDA as an effective tool for predicting potential disease-associated microbes.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"25 6","pages":""},"PeriodicalIF":6.8,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11427075/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142341938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tongqing Wei, Chenqi Lu, Hanxiao Du, Qianru Yang, Xin Qi, Yankun Liu, Yi Zhang, Chen Chen, Yutong Li, Yuanhao Tang, Wen-Hong Zhang, Xu Tao, Ning Jiang
Phages, the natural predators of bacteria, were discovered more than 100 years ago. However, increasing antimicrobial resistance rates have revitalized phage research. Methods that are more time-consuming and efficient than wet-laboratory experiments are needed to help screen phages quickly for therapeutic use. Traditional computational methods usually ignore the fact that phage-bacteria interactions are achieved by key genes and proteins. Methods for intraspecific prediction are rare since almost all existing methods consider only interactions at the species and genus levels. Moreover, most strains in existing databases contain only partial genome information because whole-genome information for species is difficult to obtain. Here, we propose a new approach for interaction prediction by constructing new features from key genes and proteins via the application of K-means sampling to select high-quality negative samples for prediction. Finally, we develop DeepPBI-KG, a corresponding prediction tool based on feature selection and a deep neural network. The results show that the average area under the curve for prediction reached 0.93 for each strain, and the overall AUC and area under the precision-recall curve reached 0.89 and 0.92, respectively, on the independent test set; these values are greater than those of other existing prediction tools. The forward and reverse validation results indicate that key genes and key proteins regulate and influence the interaction, which supports the reliability of the model. In addition, intraspecific prediction experiments based on Klebsiella pneumoniae data demonstrate the potential applicability of DeepPBI-KG for intraspecific prediction. In summary, the feature engineering and interaction prediction approaches proposed in this study can effectively improve the robustness and stability of interaction prediction, can achieve high generalizability, and may provide new directions and insights for rapid phage screening for therapy.
{"title":"DeepPBI-KG: a deep learning method for the prediction of phage-bacteria interactions based on key genes.","authors":"Tongqing Wei, Chenqi Lu, Hanxiao Du, Qianru Yang, Xin Qi, Yankun Liu, Yi Zhang, Chen Chen, Yutong Li, Yuanhao Tang, Wen-Hong Zhang, Xu Tao, Ning Jiang","doi":"10.1093/bib/bbae484","DOIUrl":"10.1093/bib/bbae484","url":null,"abstract":"<p><p>Phages, the natural predators of bacteria, were discovered more than 100 years ago. However, increasing antimicrobial resistance rates have revitalized phage research. Methods that are more time-consuming and efficient than wet-laboratory experiments are needed to help screen phages quickly for therapeutic use. Traditional computational methods usually ignore the fact that phage-bacteria interactions are achieved by key genes and proteins. Methods for intraspecific prediction are rare since almost all existing methods consider only interactions at the species and genus levels. Moreover, most strains in existing databases contain only partial genome information because whole-genome information for species is difficult to obtain. Here, we propose a new approach for interaction prediction by constructing new features from key genes and proteins via the application of K-means sampling to select high-quality negative samples for prediction. Finally, we develop DeepPBI-KG, a corresponding prediction tool based on feature selection and a deep neural network. The results show that the average area under the curve for prediction reached 0.93 for each strain, and the overall AUC and area under the precision-recall curve reached 0.89 and 0.92, respectively, on the independent test set; these values are greater than those of other existing prediction tools. The forward and reverse validation results indicate that key genes and key proteins regulate and influence the interaction, which supports the reliability of the model. In addition, intraspecific prediction experiments based on Klebsiella pneumoniae data demonstrate the potential applicability of DeepPBI-KG for intraspecific prediction. In summary, the feature engineering and interaction prediction approaches proposed in this study can effectively improve the robustness and stability of interaction prediction, can achieve high generalizability, and may provide new directions and insights for rapid phage screening for therapy.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"25 6","pages":""},"PeriodicalIF":6.8,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11440089/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142341940","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qiang Su, Yi Long, Deming Gou, Junmin Quan, Qizhou Lian
We introduce a groundbreaking approach: the minimum free energy-based Gaussian Self-Benchmarking (MFE-GSB) framework, designed to combat the myriad of biases inherent in RNA-seq data. Central to our methodology is the MFE concept, facilitating the adoption of a Gaussian distribution model tailored to effectively mitigate all co-existing biases within a k-mer counting scheme. The MFE-GSB framework operates on a sophisticated dual-model system, juxtaposing modeling data of uniform k-mer distribution against the real, observed sequencing data characterized by nonuniform k-mer distributions. The framework applies a Gaussian function, guided by the predetermined parameters-mean and SD-derived from modeling data, to fit unknown sequencing data. This dual comparison allows for the accurate prediction of k-mer abundances across MFE categories, enabling simultaneous correction of biases at the single k-mer level. Through validation with both engineered RNA constructs and human tissue RNA samples, its wide-ranging efficacy and applicability are demonstrated.
{"title":"Enhancing RNA-seq analysis by addressing all co-existing biases using a self-benchmarking approach with 2D structural insights.","authors":"Qiang Su, Yi Long, Deming Gou, Junmin Quan, Qizhou Lian","doi":"10.1093/bib/bbae532","DOIUrl":"10.1093/bib/bbae532","url":null,"abstract":"<p><p>We introduce a groundbreaking approach: the minimum free energy-based Gaussian Self-Benchmarking (MFE-GSB) framework, designed to combat the myriad of biases inherent in RNA-seq data. Central to our methodology is the MFE concept, facilitating the adoption of a Gaussian distribution model tailored to effectively mitigate all co-existing biases within a k-mer counting scheme. The MFE-GSB framework operates on a sophisticated dual-model system, juxtaposing modeling data of uniform k-mer distribution against the real, observed sequencing data characterized by nonuniform k-mer distributions. The framework applies a Gaussian function, guided by the predetermined parameters-mean and SD-derived from modeling data, to fit unknown sequencing data. This dual comparison allows for the accurate prediction of k-mer abundances across MFE categories, enabling simultaneous correction of biases at the single k-mer level. Through validation with both engineered RNA constructs and human tissue RNA samples, its wide-ranging efficacy and applicability are demonstrated.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"25 6","pages":""},"PeriodicalIF":6.8,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11491153/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142458372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The rapid development of spatially resolved transcriptomics (SRT) technologies has provided unprecedented opportunities for exploring the structure of specific organs or tissues. However, these techniques (such as image-based SRT) can achieve single-cell resolution, but can only capture the expression levels of tens to hundreds of genes. Such spatial transcriptomics (ST) data, carrying a large number of undetected genes, have limited its application value. To address the challenge, we develop SpaDiT, a deep learning framework for spatial reconstruction and gene expression prediction using scRNA-seq data. SpaDiT employs scRNA-seq data as an a priori condition and utilizes shared genes between ST and scRNA-seq data as latent representations to construct inputs, thereby facilitating the accurate prediction of gene expression in ST data. SpaDiT enhances the accuracy of spatial gene expression predictions over a variety of spatial transcriptomics datasets. We have demonstrated the effectiveness of SpaDiT by conducting extensive experiments on both seq-based and image-based ST data. We compared SpaDiT with eight highly effective baseline methods and found that our proposed method achieved an 8%-12% improvement in performance across multiple metrics. Source code and all datasets used in this paper are available at https://github.com/wenwenmin/SpaDiT and https://zenodo.org/records/12792074.
空间分辨转录组学(SRT)技术的快速发展为探索特定器官或组织的结构提供了前所未有的机会。然而,这些技术(如基于图像的 SRT)可以达到单细胞分辨率,但只能捕捉几十到几百个基因的表达水平。这种空间转录组学(ST)数据携带大量未检测到的基因,限制了其应用价值。为了应对这一挑战,我们开发了一种利用 scRNA-seq 数据进行空间重建和基因表达预测的深度学习框架 SpaDiT。SpaDiT 将 scRNA-seq 数据作为先验条件,利用 ST 和 scRNA-seq 数据之间的共享基因作为潜在表征来构建输入,从而促进 ST 数据中基因表达的准确预测。SpaDiT 提高了对各种空间转录组学数据集进行空间基因表达预测的准确性。我们在基于序列和图像的 ST 数据上进行了大量实验,证明了 SpaDiT 的有效性。我们将 SpaDiT 与八种高效的基线方法进行了比较,发现我们提出的方法在多个指标上的性能提高了 8%-12%。本文使用的源代码和所有数据集可在 https://github.com/wenwenmin/SpaDiT 和 https://zenodo.org/records/12792074 上获取。
{"title":"SpaDiT: diffusion transformer for spatial gene expression prediction using scRNA-seq.","authors":"Xiaoyu Li, Fangfang Zhu, Wenwen Min","doi":"10.1093/bib/bbae571","DOIUrl":"10.1093/bib/bbae571","url":null,"abstract":"<p><p>The rapid development of spatially resolved transcriptomics (SRT) technologies has provided unprecedented opportunities for exploring the structure of specific organs or tissues. However, these techniques (such as image-based SRT) can achieve single-cell resolution, but can only capture the expression levels of tens to hundreds of genes. Such spatial transcriptomics (ST) data, carrying a large number of undetected genes, have limited its application value. To address the challenge, we develop SpaDiT, a deep learning framework for spatial reconstruction and gene expression prediction using scRNA-seq data. SpaDiT employs scRNA-seq data as an a priori condition and utilizes shared genes between ST and scRNA-seq data as latent representations to construct inputs, thereby facilitating the accurate prediction of gene expression in ST data. SpaDiT enhances the accuracy of spatial gene expression predictions over a variety of spatial transcriptomics datasets. We have demonstrated the effectiveness of SpaDiT by conducting extensive experiments on both seq-based and image-based ST data. We compared SpaDiT with eight highly effective baseline methods and found that our proposed method achieved an 8%-12% improvement in performance across multiple metrics. Source code and all datasets used in this paper are available at https://github.com/wenwenmin/SpaDiT and https://zenodo.org/records/12792074.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"25 6","pages":""},"PeriodicalIF":6.8,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11541600/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142603263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mutations in the interface of membrane protein (MP) complexes are key contributors to a broad spectrum of human diseases, primarily due to changes in their binding affinities. While various methods exist for predicting the mutation-induced changes in binding affinity (ΔΔG) in protein-protein complexes, none are specific to MP complexes. This study proposes a novel strategy for ΔΔG prediction in MP complexes, which combines linear and nonlinear models, to obtain a more robust model with improved prediction accuracy. We used multiple linear regression to extract informative features that influence the binding affinity in MP complexes, which included changes in the stability of the complex, conservation score, electrostatic interaction, relatively accessible surface area, and interface contacts. Further, using gradient boosting regressor on the selected features, we developed MPA-MutPred, a novel method specific for predicting the ΔΔG of membrane protein-protein complexes, and it is freely accessible at https://web.iitm.ac.in/bioinfo2/MPA-MutPred/. Our method achieved a correlation of 0.75 and a mean absolute error (MAE) of 0.73 kcal/mol in the jack-knife test conducted on a dataset of 770 mutants. We further validated the method using a blind test set of 86 mutations, obtaining a correlation of 0.85 and an MAE of 0.77 kcal/mol. We anticipate that this method can be used for large-scale studies to understand the influence of binding affinity change on disease-causing mutations in MP complexes, thereby aiding in the understanding of disease mechanisms and the identification of potential therapeutic targets.
{"title":"MPA-MutPred: a novel strategy for accurately predicting the binding affinity change upon mutation in membrane protein complexes.","authors":"Fathima Ridha, M Michael Gromiha","doi":"10.1093/bib/bbae598","DOIUrl":"10.1093/bib/bbae598","url":null,"abstract":"<p><p>Mutations in the interface of membrane protein (MP) complexes are key contributors to a broad spectrum of human diseases, primarily due to changes in their binding affinities. While various methods exist for predicting the mutation-induced changes in binding affinity (ΔΔG) in protein-protein complexes, none are specific to MP complexes. This study proposes a novel strategy for ΔΔG prediction in MP complexes, which combines linear and nonlinear models, to obtain a more robust model with improved prediction accuracy. We used multiple linear regression to extract informative features that influence the binding affinity in MP complexes, which included changes in the stability of the complex, conservation score, electrostatic interaction, relatively accessible surface area, and interface contacts. Further, using gradient boosting regressor on the selected features, we developed MPA-MutPred, a novel method specific for predicting the ΔΔG of membrane protein-protein complexes, and it is freely accessible at https://web.iitm.ac.in/bioinfo2/MPA-MutPred/. Our method achieved a correlation of 0.75 and a mean absolute error (MAE) of 0.73 kcal/mol in the jack-knife test conducted on a dataset of 770 mutants. We further validated the method using a blind test set of 86 mutations, obtaining a correlation of 0.85 and an MAE of 0.77 kcal/mol. We anticipate that this method can be used for large-scale studies to understand the influence of binding affinity change on disease-causing mutations in MP complexes, thereby aiding in the understanding of disease mechanisms and the identification of potential therapeutic targets.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"25 6","pages":""},"PeriodicalIF":6.8,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11568875/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142643857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}