Federico Tosi, Thomas Roatsch, André Galli, Ernst Hauber, Alice Lucchetti, Philippa Molyneux, Katrin Stephan, Nicholas Achilleos, Francesca Bovolo, John Carter, Thibault Cavalié, Giuseppe Cimò, Emiliano D'Aversa, Klaus Gwinner, Paul Hartogh, Hans Huybrighs, Yves Langevin, Emmanuel Lellouch, Alessandra Migliorini, Pasquale Palumbo, Giuseppe Piccioni, Jeffrey J Plaut, Frank Postberg, François Poulet, Kurt Retherford, Ladislav Rezac, Lorenz Roth, Anezina Solomonidou, Gabriel Tobie, Paolo Tortora, Cecilia Tubiana, Roland Wagner, Eva Wirström, Peter Wurz, Francesca Zambon, Marco Zannoni, Stas Barabash, Lorenzo Bruzzone, Michele Dougherty, Randy Gladstone, Leonid I Gurvits, Hauke Hussmann, Luciano Iess, Jan-Erik Wahlund, Olivier Witasse, Claire Vallat, Rosario Lorente
{"title":"Characterization of the Surfaces and Near-Surface Atmospheres of Ganymede, Europa and Callisto by JUICE.","authors":"Federico Tosi, Thomas Roatsch, André Galli, Ernst Hauber, Alice Lucchetti, Philippa Molyneux, Katrin Stephan, Nicholas Achilleos, Francesca Bovolo, John Carter, Thibault Cavalié, Giuseppe Cimò, Emiliano D'Aversa, Klaus Gwinner, Paul Hartogh, Hans Huybrighs, Yves Langevin, Emmanuel Lellouch, Alessandra Migliorini, Pasquale Palumbo, Giuseppe Piccioni, Jeffrey J Plaut, Frank Postberg, François Poulet, Kurt Retherford, Ladislav Rezac, Lorenz Roth, Anezina Solomonidou, Gabriel Tobie, Paolo Tortora, Cecilia Tubiana, Roland Wagner, Eva Wirström, Peter Wurz, Francesca Zambon, Marco Zannoni, Stas Barabash, Lorenzo Bruzzone, Michele Dougherty, Randy Gladstone, Leonid I Gurvits, Hauke Hussmann, Luciano Iess, Jan-Erik Wahlund, Olivier Witasse, Claire Vallat, Rosario Lorente","doi":"10.1007/s11214-024-01089-8","DOIUrl":null,"url":null,"abstract":"<p><p>We present the state of the art on the study of surfaces and tenuous atmospheres of the icy Galilean satellites Ganymede, Europa and Callisto, from past and ongoing space exploration conducted with several spacecraft to recent telescopic observations, and we show how the ESA JUICE mission plans to explore these surfaces and atmospheres in detail with its scientific payload. The surface geology of the moons is the main evidence of their evolution and reflects the internal heating provided by tidal interactions. Surface composition is the result of endogenous and exogenous processes, with the former providing valuable information about the potential composition of shallow subsurface liquid pockets, possibly connected to deeper oceans. Finally, the icy Galilean moons have tenuous atmospheres that arise from charged particle sputtering affecting their surfaces. In the case of Europa, plumes of water vapour have also been reported, whose phenomenology at present is poorly understood and requires future close exploration. In the three main sections of the article, we discuss these topics, highlighting the key scientific objectives and investigations to be achieved by JUICE. Based on a recent predicted trajectory, we also show potential coverage maps and other examples of reference measurements. The scientific discussion and observation planning presented here are the outcome of the JUICE Working Group 2 (WG2): \"<i>Surfaces and Near-surface Exospheres of the Satellites, dust and rings</i>\".</p>","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":null,"pages":null},"PeriodicalIF":11.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11310297/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s11214-024-01089-8","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
We present the state of the art on the study of surfaces and tenuous atmospheres of the icy Galilean satellites Ganymede, Europa and Callisto, from past and ongoing space exploration conducted with several spacecraft to recent telescopic observations, and we show how the ESA JUICE mission plans to explore these surfaces and atmospheres in detail with its scientific payload. The surface geology of the moons is the main evidence of their evolution and reflects the internal heating provided by tidal interactions. Surface composition is the result of endogenous and exogenous processes, with the former providing valuable information about the potential composition of shallow subsurface liquid pockets, possibly connected to deeper oceans. Finally, the icy Galilean moons have tenuous atmospheres that arise from charged particle sputtering affecting their surfaces. In the case of Europa, plumes of water vapour have also been reported, whose phenomenology at present is poorly understood and requires future close exploration. In the three main sections of the article, we discuss these topics, highlighting the key scientific objectives and investigations to be achieved by JUICE. Based on a recent predicted trajectory, we also show potential coverage maps and other examples of reference measurements. The scientific discussion and observation planning presented here are the outcome of the JUICE Working Group 2 (WG2): "Surfaces and Near-surface Exospheres of the Satellites, dust and rings".
我们介绍了研究伽利略冰卫星甘耶米德、欧罗巴和卡利斯托的表面和微弱大气层的最新技术,从过去和正在进行的利用几个航天器进行的空间探索到最近的望远镜观测,我们还展示了欧空局JUICE任务计划如何利用其科学有效载荷详细探索这些表面和大气层。卫星的表面地质是其演化的主要证据,反映了潮汐相互作用所提供的内部加热。表面成分是内源和外源过程的结果,前者提供了有关浅层地下液袋潜在成分的宝贵信息,这些液袋可能与更深的海洋相连。最后,冰冷的伽利略卫星有脆弱的大气层,这是由于带电粒子溅射影响了它们的表面。就欧罗巴卫星而言,也有关于水蒸气羽流的报道,目前对其现象还知之甚少,需要在未来进行深入探索。在文章的三个主要部分,我们讨论了这些主题,强调了 JUICE 将实现的主要科学目标和调查。根据最近的预测轨迹,我们还展示了潜在的覆盖图和其他参考测量实例。这里介绍的科学讨论和观测规划是 JUICE 第 2 工作组(WG2)的成果:"卫星、尘埃和星环的表面和近表面外层"。
期刊介绍:
ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels.
The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.