{"title":"Analyzing Global Cancer Control: Progress of National Cancer Control Programs through Composite Indicators and Regression Modeling.","authors":"Rohit Singh Chauhan, Anusheel Munshi, Anirudh Pradhan","doi":"10.4103/jmp.jmp_21_24","DOIUrl":null,"url":null,"abstract":"<p><strong>Aim: </strong>Cancer is a significant public health concern, and National Cancer Control Programs (NCCPs) are crucial for reducing its burden. However, assessing the progress of NCCPs is challenging due to the complexity of cancer control outcomes and the various factors that influence them. Composite indicators can provide a comprehensive and accurate assessment of NCCP progress.</p><p><strong>Materials and methods: </strong>The dataset was compiled for 144 countries and comprised eight composite indices and two high-level comparative indicators (mortality-to-cancer incidence ratio [MIR] and 5-year cancer prevalence-to-incidence ratio [PCIR]) representing NCCP outcomes. Two large databases and six annual composite index reports were consulted. Linear regression analysis and Pearson correlation coefficients were used to establish a relationship between indicators and NCCP outcomes. A multiple regression machine learning model was generated to further improve the accuracy of NCCP outcome prediction.</p><p><strong>Results: </strong>High-income countries had the highest cancer incidence, whereas low-income countries had the highest MIR. Linear regression analysis indicated a negative trend between all composite indicators and MIR, whereas a positive trend was observed with PCIR. The Human Development Index and the Legatum Prosperity Index had the highest adjusted <i>R</i> <sup>2</sup> values for MIR (0.74 and 0.73) and PCIR (0.86 and 0.81), respectively. Multiple linear regression modeling was performed, and the results indicated a low mean squared error score (-0.02) and a high <i>R</i> <sup>2</sup> score (0.86), suggesting that the model accurately predicts NCCP outcomes.</p><p><strong>Conclusions: </strong>Overall, composite indicators can be an effective tool for evaluating NCCP, and the results of this study can aid in the development and keeping track of NCCP progress for better cancer control.</p>","PeriodicalId":51719,"journal":{"name":"Journal of Medical Physics","volume":"49 2","pages":"225-231"},"PeriodicalIF":0.7000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11309144/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/jmp.jmp_21_24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/25 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Aim: Cancer is a significant public health concern, and National Cancer Control Programs (NCCPs) are crucial for reducing its burden. However, assessing the progress of NCCPs is challenging due to the complexity of cancer control outcomes and the various factors that influence them. Composite indicators can provide a comprehensive and accurate assessment of NCCP progress.
Materials and methods: The dataset was compiled for 144 countries and comprised eight composite indices and two high-level comparative indicators (mortality-to-cancer incidence ratio [MIR] and 5-year cancer prevalence-to-incidence ratio [PCIR]) representing NCCP outcomes. Two large databases and six annual composite index reports were consulted. Linear regression analysis and Pearson correlation coefficients were used to establish a relationship between indicators and NCCP outcomes. A multiple regression machine learning model was generated to further improve the accuracy of NCCP outcome prediction.
Results: High-income countries had the highest cancer incidence, whereas low-income countries had the highest MIR. Linear regression analysis indicated a negative trend between all composite indicators and MIR, whereas a positive trend was observed with PCIR. The Human Development Index and the Legatum Prosperity Index had the highest adjusted R2 values for MIR (0.74 and 0.73) and PCIR (0.86 and 0.81), respectively. Multiple linear regression modeling was performed, and the results indicated a low mean squared error score (-0.02) and a high R2 score (0.86), suggesting that the model accurately predicts NCCP outcomes.
Conclusions: Overall, composite indicators can be an effective tool for evaluating NCCP, and the results of this study can aid in the development and keeping track of NCCP progress for better cancer control.
期刊介绍:
JOURNAL OF MEDICAL PHYSICS is the official journal of Association of Medical Physicists of India (AMPI). The association has been bringing out a quarterly publication since 1976. Till the end of 1993, it was known as Medical Physics Bulletin, which then became Journal of Medical Physics. The main objective of the Journal is to serve as a vehicle of communication to highlight all aspects of the practice of medical radiation physics. The areas covered include all aspects of the application of radiation physics to biological sciences, radiotherapy, radiodiagnosis, nuclear medicine, dosimetry and radiation protection. Papers / manuscripts dealing with the aspects of physics related to cancer therapy / radiobiology also fall within the scope of the journal.