Parimal T Patwe, Sudesh S Deshpande, Gajanan R Mahajan
{"title":"Evaluation of Ion Recombination Correction for Indigenously Developed Farmer Ion Chamber in Flattening Filter-Free Photon Beams.","authors":"Parimal T Patwe, Sudesh S Deshpande, Gajanan R Mahajan","doi":"10.4103/jmp.jmp_136_23","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose and aim: </strong>Modern generation linear accelerator (linac) either generates X-rays with a flattening filter (WFF beam) or without flattening filter free (FFF beam). The FFF beams are associated with a significantly higher dose per pulse compared to WFF beams due to the absence of a flattening filter and the corresponding attenuation caused by it. This results in increased ion recombination and a larger saturation correction factor (k<sub>s</sub>). In accordance with the IAEA TRS 398 dosimetry protocol, k<sub>s</sub> is necessary for the accurate measurement of absorbed dose at a point in water. The objective of this study was to evaluate the k<sub>s</sub> for the indigenous FAR 65-GB ion chamber (IC) for the FFF X-rays.</p><p><strong>Materials and methods: </strong>The study was carried out on TrueBeam linac (Varian, A Siemens Healthineers company) which offers 6 MV WFF, 6 MV FFF, 10 MV WFF and 10 MV FFF beams. The two-voltage method was employed to measure k<sub>s</sub> in a solid water phantom at a depth of 10 cm for a FAR 65-GB and SNC 600c and 0.6cc PTW 30013 Farmer chambers at 100 cm and 150 cm source-to-chamber distances for a 10 cm × 10 cm field size.</p><p><strong>Results: </strong>The k<sub>s</sub> values for the FAR 65-GB, PTW 30,013, and SNC 600c were 1.0055 (1.0113), 1.0051 (1.0071), and 1.0033 (1.0066) for the 6 MV WFF (FFF) beams, respectively, and 1.0066 (1.0178), 1.0061 (1.0137), and 1.0035 (1.0119) for the 10MV WFF (FFF) beams, respectively. The k<sub>s</sub> values calculated by two-voltage method matches with k<sub>s</sub> values obtained from Jaffe's plot. The chamber exhibited a linear dose-response up to 3000 cGy, beyond which a saturation effect was observed.</p><p><strong>Conclusions: </strong>Our study reveals that this chamber is suitable for the reference dosimetry for the FFF beams.</p>","PeriodicalId":51719,"journal":{"name":"Journal of Medical Physics","volume":"49 2","pages":"279-284"},"PeriodicalIF":0.7000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11309131/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/jmp.jmp_136_23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/25 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose and aim: Modern generation linear accelerator (linac) either generates X-rays with a flattening filter (WFF beam) or without flattening filter free (FFF beam). The FFF beams are associated with a significantly higher dose per pulse compared to WFF beams due to the absence of a flattening filter and the corresponding attenuation caused by it. This results in increased ion recombination and a larger saturation correction factor (ks). In accordance with the IAEA TRS 398 dosimetry protocol, ks is necessary for the accurate measurement of absorbed dose at a point in water. The objective of this study was to evaluate the ks for the indigenous FAR 65-GB ion chamber (IC) for the FFF X-rays.
Materials and methods: The study was carried out on TrueBeam linac (Varian, A Siemens Healthineers company) which offers 6 MV WFF, 6 MV FFF, 10 MV WFF and 10 MV FFF beams. The two-voltage method was employed to measure ks in a solid water phantom at a depth of 10 cm for a FAR 65-GB and SNC 600c and 0.6cc PTW 30013 Farmer chambers at 100 cm and 150 cm source-to-chamber distances for a 10 cm × 10 cm field size.
Results: The ks values for the FAR 65-GB, PTW 30,013, and SNC 600c were 1.0055 (1.0113), 1.0051 (1.0071), and 1.0033 (1.0066) for the 6 MV WFF (FFF) beams, respectively, and 1.0066 (1.0178), 1.0061 (1.0137), and 1.0035 (1.0119) for the 10MV WFF (FFF) beams, respectively. The ks values calculated by two-voltage method matches with ks values obtained from Jaffe's plot. The chamber exhibited a linear dose-response up to 3000 cGy, beyond which a saturation effect was observed.
Conclusions: Our study reveals that this chamber is suitable for the reference dosimetry for the FFF beams.
期刊介绍:
JOURNAL OF MEDICAL PHYSICS is the official journal of Association of Medical Physicists of India (AMPI). The association has been bringing out a quarterly publication since 1976. Till the end of 1993, it was known as Medical Physics Bulletin, which then became Journal of Medical Physics. The main objective of the Journal is to serve as a vehicle of communication to highlight all aspects of the practice of medical radiation physics. The areas covered include all aspects of the application of radiation physics to biological sciences, radiotherapy, radiodiagnosis, nuclear medicine, dosimetry and radiation protection. Papers / manuscripts dealing with the aspects of physics related to cancer therapy / radiobiology also fall within the scope of the journal.