{"title":"Validation and Efficiency Evaluation of Automated Quality Assurance Software SunCHECK™ Machine for Mechanical and Dosimetric Quality Assurance.","authors":"Mayank Dhoundiyal, Sachin Rasal, Ajinkya Gupte, Prasad Raj Dandekar, Ananda Jadhav, Omkar Awate","doi":"10.4103/jmp.jmp_158_23","DOIUrl":null,"url":null,"abstract":"<p><p>Recent decades have witnessed transformative advances in radiation physics and computer technology, revolutionizing the precision of radiation therapy. The adoption of intricate treatment techniques such as three-dimensional conformal radiotherapy, intensity-modulated radiotherapy, volumetric-modulated arc therapy, and image-guided radiotherapy necessitates robust quality assurance (QA) programs. This study introduces the SunCHECK™ Machine (SCM), a web-based QA platform, presenting early results from its integration into a comprehensive QA program. linear accelerators (LINAC) demand QA programs to uphold machine characteristics within accepted tolerances. The increasing treatment complexity underscores the need for streamlined procedures. The selection of QA tools is vital, requiring efficiency, accuracy, and alignment with clinic needs, as per recommendations such as the AAPM task group 142 report. The materials and methods section details SCM implementation in various QA aspects, encompassing daily QA (DQA), imaging QA with Catphan, conventional output assessment with a water phantom, and LINAC isocenter verification through the Winston-Lutz test. Challenges in QA processes, such as manual data transcription and limited device integration, are highlighted. Early results demonstrate SCM's significant reduction in QA time, ensuring accuracy and efficiency. Its automation eliminates interobserver variation and human errors, contributing to time savings and near-immediate result publication. SCM's role in consolidating and storing DQA data within a single platform is emphasized, offering potential in resource optimization, especially in resource-limited settings. In conclusion, SCM shows promise for efficient and accurate mechanical and dosimetric QA in radiation therapy. The study underscores SCM's potential to address contemporary QA challenges, contributing to improved resource utilization without compromising quality and safety standards.</p>","PeriodicalId":51719,"journal":{"name":"Journal of Medical Physics","volume":"49 2","pages":"311-315"},"PeriodicalIF":0.7000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11309146/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/jmp.jmp_158_23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/25 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Recent decades have witnessed transformative advances in radiation physics and computer technology, revolutionizing the precision of radiation therapy. The adoption of intricate treatment techniques such as three-dimensional conformal radiotherapy, intensity-modulated radiotherapy, volumetric-modulated arc therapy, and image-guided radiotherapy necessitates robust quality assurance (QA) programs. This study introduces the SunCHECK™ Machine (SCM), a web-based QA platform, presenting early results from its integration into a comprehensive QA program. linear accelerators (LINAC) demand QA programs to uphold machine characteristics within accepted tolerances. The increasing treatment complexity underscores the need for streamlined procedures. The selection of QA tools is vital, requiring efficiency, accuracy, and alignment with clinic needs, as per recommendations such as the AAPM task group 142 report. The materials and methods section details SCM implementation in various QA aspects, encompassing daily QA (DQA), imaging QA with Catphan, conventional output assessment with a water phantom, and LINAC isocenter verification through the Winston-Lutz test. Challenges in QA processes, such as manual data transcription and limited device integration, are highlighted. Early results demonstrate SCM's significant reduction in QA time, ensuring accuracy and efficiency. Its automation eliminates interobserver variation and human errors, contributing to time savings and near-immediate result publication. SCM's role in consolidating and storing DQA data within a single platform is emphasized, offering potential in resource optimization, especially in resource-limited settings. In conclusion, SCM shows promise for efficient and accurate mechanical and dosimetric QA in radiation therapy. The study underscores SCM's potential to address contemporary QA challenges, contributing to improved resource utilization without compromising quality and safety standards.
期刊介绍:
JOURNAL OF MEDICAL PHYSICS is the official journal of Association of Medical Physicists of India (AMPI). The association has been bringing out a quarterly publication since 1976. Till the end of 1993, it was known as Medical Physics Bulletin, which then became Journal of Medical Physics. The main objective of the Journal is to serve as a vehicle of communication to highlight all aspects of the practice of medical radiation physics. The areas covered include all aspects of the application of radiation physics to biological sciences, radiotherapy, radiodiagnosis, nuclear medicine, dosimetry and radiation protection. Papers / manuscripts dealing with the aspects of physics related to cancer therapy / radiobiology also fall within the scope of the journal.