P W Crous, J Dijksterhuis, M Figge, M Sandoval-Denis
{"title":"<i>Mjuua agapanthi gen. et sp. nov</i>., a biotrophic mycoparasite of <i>Fusarium</i> spp.","authors":"P W Crous, J Dijksterhuis, M Figge, M Sandoval-Denis","doi":"10.3114/fuse.2024.13.09","DOIUrl":null,"url":null,"abstract":"<p><p><b></b> <i>Fusarium agapanthi</i> is newly reported from the centre of origin of <i>Agapanthus</i> in South Africa, where it is associated with dead flower stalks of <i>Agapanthus praecox</i>. <i>Mjuua agapanthi</i>, a rare hyphomycete with a morphology corresponding to asexual morphs of <i>Pyxidiophora</i>, was isolated as mycoparasitic on <i>F. agapanthi</i>, along with bacteria that co-occurred in synnematal heads of <i>M. agapanthi.</i> Germinating conidia of <i>M. agapanthi</i> were observed to parasitise germinating conidia of <i>F. agapanthi</i>. Although <i>M. agapanthi</i> could not be cultivated on its own, the association with <i>Fusarium</i> proved to not be restricted to <i>F. agapanthi</i>, as it could also be cultivated with other <i>Fusarium</i> spp. <i>Mjuua agapanthi</i> is a member of <i>Pyxidiophorales</i>, an order of obligate insect parasitic microfungi. The exact role of the bacteria in synnematal heads of <i>M. agapanthi</i> remains to be further elucidated, although one bacterium, <i>Alsobacter metallidurans</i>, appeared to cause lysis of the synnematal conidial cell walls<i>.</i> This discovery suggests that many unculturable obligate biotrophic microbes can probably be cultivated if co-cultivated with their respective hosts. <b>Citation:</b> Crous PW, Dijksterhuis J, Figge M, Sandoval-Denis M (2024). <i>Mjuua agapanthi gen. et sp. nov</i>., a biotrophic mycoparasite of <i>Fusarium</i> spp. <i>Fungal Systematics and Evolution</i> <b>13</b>: 153-161. doi: 10.3114/fuse.2024.13.09.</p>","PeriodicalId":73121,"journal":{"name":"Fungal systematics and evolution","volume":"13 ","pages":"153-161"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11310916/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fungal systematics and evolution","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3114/fuse.2024.13.09","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/7 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Fusarium agapanthi is newly reported from the centre of origin of Agapanthus in South Africa, where it is associated with dead flower stalks of Agapanthus praecox. Mjuua agapanthi, a rare hyphomycete with a morphology corresponding to asexual morphs of Pyxidiophora, was isolated as mycoparasitic on F. agapanthi, along with bacteria that co-occurred in synnematal heads of M. agapanthi. Germinating conidia of M. agapanthi were observed to parasitise germinating conidia of F. agapanthi. Although M. agapanthi could not be cultivated on its own, the association with Fusarium proved to not be restricted to F. agapanthi, as it could also be cultivated with other Fusarium spp. Mjuua agapanthi is a member of Pyxidiophorales, an order of obligate insect parasitic microfungi. The exact role of the bacteria in synnematal heads of M. agapanthi remains to be further elucidated, although one bacterium, Alsobacter metallidurans, appeared to cause lysis of the synnematal conidial cell walls. This discovery suggests that many unculturable obligate biotrophic microbes can probably be cultivated if co-cultivated with their respective hosts. Citation: Crous PW, Dijksterhuis J, Figge M, Sandoval-Denis M (2024). Mjuua agapanthi gen. et sp. nov., a biotrophic mycoparasite of Fusarium spp. Fungal Systematics and Evolution13: 153-161. doi: 10.3114/fuse.2024.13.09.
新近报告的 Agapanthi 镰刀霉产于南非 Agapanthus 的原产地中心,在那里它与 Agapanthus praecox 的枯萎花茎有关。Mjuua agapanthi 是一种罕见的拟真菌,其形态与 Pyxidiophora 的无性形态相似,被分离出来寄生在 F. agapanthi 上,同时在 M. agapanthi 的合生头状花序中也有细菌共生。观察到 M. agapanthi 的发芽分生孢子寄生在 F. agapanthi 的发芽分生孢子上。虽然 M. agapanthi 无法单独培养,但事实证明,它与镰刀菌的结合并不局限于 F. agapanthi,因为它还可以与其他镰刀菌属一起培养。 Mjuua agapanthi 是 Pyxidiophorales 的成员,Pyxidiophorales 是一种必须寄生于昆虫的微真菌。细菌在 M. agapanthi 合蕊头状花序中的确切作用仍有待进一步阐明,不过有一种细菌(Asobacter metallidurans)似乎能导致合蕊分生孢子细胞壁裂解。这一发现表明,如果与各自的宿主共同培养,许多不可培养的强制性生物营养微生物都有可能被培养出来。引用:Crous PW, Dijksterhuis J, Figge M, Sandoval-Denis M (2024).Mjuua agapanthi gen.