Soft Crawling Microrobot Based on Flexible Optoelectronics Enabling Autonomous Phototaxis in Terrestrial and Aquatic Environments.

Jiahui Cheng, Ruiping Zhang, Haibo Li, Zhouheng Wang, Chen Lin, Peng Jin, Yunmeng Nie, Bingwei Lu, Yang Jiao, Yinji Ma, Xue Feng
{"title":"Soft Crawling Microrobot Based on Flexible Optoelectronics Enabling Autonomous Phototaxis in Terrestrial and Aquatic Environments.","authors":"Jiahui Cheng, Ruiping Zhang, Haibo Li, Zhouheng Wang, Chen Lin, Peng Jin, Yunmeng Nie, Bingwei Lu, Yang Jiao, Yinji Ma, Xue Feng","doi":"10.1089/soro.2023.0112","DOIUrl":null,"url":null,"abstract":"<p><p>Many organisms move directly toward light for prey hunting or navigation, which is called phototaxis. Mimicking this behavior in robots is crucially important in the energy industry and environmental exploration. However, the phototaxis robots with rigid bodies and sensors still face challenges in adapting to unstructured environments, and the soft phototaxis robots often have high requirements for light sources with limited locomotion performance. Here, we report a 3.5 g soft microrobot that can perceive the azimuth angle of light sources and exhibit rapid phototaxis locomotion autonomously enabled by three-dimensional flexible optoelectronics and compliant shape memory alloy (SMA) actuators. The optoelectronics is assembled from a planar patterned flexible circuit with miniature photodetectors, introducing the self-occlusion to light, resulting in high sensing ability (error < 3.5°) compared with the planar counterpart. The actuator produces a straightening motion driven by an SMA wire and is then returned to a curled shape by a prestretched elastomer layer. The actuator exhibits rapid actuation within 0.1 s, a significant degree of deformation (curvature change of ∼87 m<sup>-1</sup>) and a blocking force of ∼0.4 N, which is 68 times its own weight. Finally, we demonstrated the robot is capable of autonomously crawling toward a moving light source in a hybrid aquatic-terrestrial environment without human intervention. We envision that our microrobot could be widely used in autonomous light tracking applications.</p>","PeriodicalId":94210,"journal":{"name":"Soft robotics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/soro.2023.0112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Many organisms move directly toward light for prey hunting or navigation, which is called phototaxis. Mimicking this behavior in robots is crucially important in the energy industry and environmental exploration. However, the phototaxis robots with rigid bodies and sensors still face challenges in adapting to unstructured environments, and the soft phototaxis robots often have high requirements for light sources with limited locomotion performance. Here, we report a 3.5 g soft microrobot that can perceive the azimuth angle of light sources and exhibit rapid phototaxis locomotion autonomously enabled by three-dimensional flexible optoelectronics and compliant shape memory alloy (SMA) actuators. The optoelectronics is assembled from a planar patterned flexible circuit with miniature photodetectors, introducing the self-occlusion to light, resulting in high sensing ability (error < 3.5°) compared with the planar counterpart. The actuator produces a straightening motion driven by an SMA wire and is then returned to a curled shape by a prestretched elastomer layer. The actuator exhibits rapid actuation within 0.1 s, a significant degree of deformation (curvature change of ∼87 m-1) and a blocking force of ∼0.4 N, which is 68 times its own weight. Finally, we demonstrated the robot is capable of autonomously crawling toward a moving light source in a hybrid aquatic-terrestrial environment without human intervention. We envision that our microrobot could be widely used in autonomous light tracking applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于柔性光电子技术的软爬行微型机器人,可在陆地和水生环境中实现自主光轴定向。
许多生物在捕食猎物或导航时都会直接朝向光线,这就是所谓的趋光性。在能源工业和环境探索中,机器人模仿这种行为至关重要。然而,带有硬体和传感器的光轴机器人在适应非结构化环境方面仍面临挑战,而软体光轴机器人通常对光源要求较高,运动性能有限。在这里,我们报告了一种 3.5 克重的软微型机器人,它能感知光源的方位角,并通过三维柔性光电子学和顺应形状记忆合金(SMA)致动器自主实现快速光轴定位运动。光电元件由带有微型光电探测器的平面图案柔性电路组装而成,引入了对光的自闭合功能,因此与平面器件相比具有较高的传感能力(误差小于 3.5°)。致动器在 SMA 线的驱动下产生拉直运动,然后通过预拉伸弹性体层恢复到卷曲形状。该致动器可在 0.1 秒内快速致动,变形程度大(曲率变化为 ∼87 m-1),阻挡力为 ∼0.4 N,是其自身重量的 68 倍。最后,我们展示了该机器人能够在水陆混合环境中自主爬向移动光源,无需人工干预。我们设想,我们的微型机器人可以广泛应用于自主光跟踪领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Soft Robotic Heart Formed with a Myocardial Band for Cardiac Functions. ZodiAq: An Isotropic Flagella-Inspired Soft Underwater Drone for Safe Marine Exploration. Reprogrammable Flexible Piezoelectric Actuator Arrays with a High Degree of Freedom for Shape Morphing and Locomotion. Small-Scale Soft Terrestrial Robot with Electrically Driven Multi-Modal Locomotion Capability. Soft Robotics in Upper Limb Neurorehabilitation and Assistance: Current Clinical Evidence and Recommendations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1