CliqueFluxNet: Unveiling EHR Insights with Stochastic Edge Fluxing and Maximal Clique Utilisation Using Graph Neural Networks.

IF 5.4 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Journal of healthcare informatics research Pub Date : 2024-08-01 eCollection Date: 2024-09-01 DOI:10.1007/s41666-024-00169-2
Soheila Molaei, Nima Ghanbari Bousejin, Ghadeer O Ghosheh, Anshul Thakur, Vinod Kumar Chauhan, Tingting Zhu, David A Clifton
{"title":"CliqueFluxNet: Unveiling EHR Insights with Stochastic Edge Fluxing and Maximal Clique Utilisation Using Graph Neural Networks.","authors":"Soheila Molaei, Nima Ghanbari Bousejin, Ghadeer O Ghosheh, Anshul Thakur, Vinod Kumar Chauhan, Tingting Zhu, David A Clifton","doi":"10.1007/s41666-024-00169-2","DOIUrl":null,"url":null,"abstract":"<p><p>Electronic Health Records (EHRs) play a crucial role in shaping predictive are models, yet they encounter challenges such as significant data gaps and class imbalances. Traditional Graph Neural Network (GNN) approaches have limitations in fully leveraging neighbourhood data or demanding intensive computational requirements for regularisation. To address this challenge, we introduce CliqueFluxNet, a novel framework that innovatively constructs a patient similarity graph to maximise cliques, thereby highlighting strong inter-patient connections. At the heart of CliqueFluxNet lies its stochastic edge fluxing strategy - a dynamic process involving random edge addition and removal during training. This strategy aims to enhance the model's generalisability and mitigate overfitting. Our empirical analysis, conducted on MIMIC-III and eICU datasets, focuses on the tasks of mortality and readmission prediction. It demonstrates significant progress in representation learning, particularly in scenarios with limited data availability. Qualitative assessments further underscore CliqueFluxNet's effectiveness in extracting meaningful EHR representations, solidifying its potential for advancing GNN applications in healthcare analytics.</p>","PeriodicalId":101413,"journal":{"name":"Journal of healthcare informatics research","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11310186/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of healthcare informatics research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s41666-024-00169-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Electronic Health Records (EHRs) play a crucial role in shaping predictive are models, yet they encounter challenges such as significant data gaps and class imbalances. Traditional Graph Neural Network (GNN) approaches have limitations in fully leveraging neighbourhood data or demanding intensive computational requirements for regularisation. To address this challenge, we introduce CliqueFluxNet, a novel framework that innovatively constructs a patient similarity graph to maximise cliques, thereby highlighting strong inter-patient connections. At the heart of CliqueFluxNet lies its stochastic edge fluxing strategy - a dynamic process involving random edge addition and removal during training. This strategy aims to enhance the model's generalisability and mitigate overfitting. Our empirical analysis, conducted on MIMIC-III and eICU datasets, focuses on the tasks of mortality and readmission prediction. It demonstrates significant progress in representation learning, particularly in scenarios with limited data availability. Qualitative assessments further underscore CliqueFluxNet's effectiveness in extracting meaningful EHR representations, solidifying its potential for advancing GNN applications in healthcare analytics.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CliqueFluxNet:利用图神经网络的随机边缘流动和最大簇利用揭示电子病历洞察力
电子健康记录(EHR)在建立预测性模型方面发挥着至关重要的作用,但它们也面临着数据缺口大和类别不平衡等挑战。传统的图神经网络(GNN)方法在充分利用邻域数据或正则化所需的密集计算要求方面存在局限性。为了应对这一挑战,我们引入了 CliqueFluxNet,这是一个新颖的框架,它以创新的方式构建患者相似性图,最大限度地增加小群,从而突出患者之间的紧密联系。CliqueFluxNet 的核心在于其随机边缘流动策略--这是一个在训练过程中随机添加和移除边缘的动态过程。该策略旨在增强模型的通用性,减少过度拟合。我们在 MIMIC-III 和 eICU 数据集上进行了实证分析,重点关注死亡率和再入院预测任务。它证明了表征学习的重大进步,尤其是在数据可用性有限的情况下。定性评估进一步强调了 CliqueFluxNet 在提取有意义的 EHR 表征方面的有效性,巩固了其在推进 GNN 在医疗分析领域应用的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Siamese Neural Network for Speech-Based Depression Classification and Severity Assessment. Predicting Multiple Outcomes Associated with Frailty based on Imbalanced Multi-label Classification. LightDPH: Lightweight Dual-Projection-Head Hierarchical Contrastive Learning for Skin Lesion Classification. A Methodology to Measure Glucose Metabolism by Quantitative Analysis of PET Images. Large Language Models in Biomedical and Health Informatics: A Review with Bibliometric Analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1