首页 > 最新文献

Journal of healthcare informatics research最新文献

英文 中文
CliqueFluxNet: Unveiling EHR Insights with Stochastic Edge Fluxing and Maximal Clique Utilisation Using Graph Neural Networks. CliqueFluxNet:利用图神经网络的随机边缘流动和最大簇利用揭示电子病历洞察力
IF 5.4 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2024-08-01 eCollection Date: 2024-09-01 DOI: 10.1007/s41666-024-00169-2
Soheila Molaei, Nima Ghanbari Bousejin, Ghadeer O Ghosheh, Anshul Thakur, Vinod Kumar Chauhan, Tingting Zhu, David A Clifton

Electronic Health Records (EHRs) play a crucial role in shaping predictive are models, yet they encounter challenges such as significant data gaps and class imbalances. Traditional Graph Neural Network (GNN) approaches have limitations in fully leveraging neighbourhood data or demanding intensive computational requirements for regularisation. To address this challenge, we introduce CliqueFluxNet, a novel framework that innovatively constructs a patient similarity graph to maximise cliques, thereby highlighting strong inter-patient connections. At the heart of CliqueFluxNet lies its stochastic edge fluxing strategy - a dynamic process involving random edge addition and removal during training. This strategy aims to enhance the model's generalisability and mitigate overfitting. Our empirical analysis, conducted on MIMIC-III and eICU datasets, focuses on the tasks of mortality and readmission prediction. It demonstrates significant progress in representation learning, particularly in scenarios with limited data availability. Qualitative assessments further underscore CliqueFluxNet's effectiveness in extracting meaningful EHR representations, solidifying its potential for advancing GNN applications in healthcare analytics.

电子健康记录(EHR)在建立预测性模型方面发挥着至关重要的作用,但它们也面临着数据缺口大和类别不平衡等挑战。传统的图神经网络(GNN)方法在充分利用邻域数据或正则化所需的密集计算要求方面存在局限性。为了应对这一挑战,我们引入了 CliqueFluxNet,这是一个新颖的框架,它以创新的方式构建患者相似性图,最大限度地增加小群,从而突出患者之间的紧密联系。CliqueFluxNet 的核心在于其随机边缘流动策略--这是一个在训练过程中随机添加和移除边缘的动态过程。该策略旨在增强模型的通用性,减少过度拟合。我们在 MIMIC-III 和 eICU 数据集上进行了实证分析,重点关注死亡率和再入院预测任务。它证明了表征学习的重大进步,尤其是在数据可用性有限的情况下。定性评估进一步强调了 CliqueFluxNet 在提取有意义的 EHR 表征方面的有效性,巩固了其在推进 GNN 在医疗分析领域应用的潜力。
{"title":"CliqueFluxNet: Unveiling EHR Insights with Stochastic Edge Fluxing and Maximal Clique Utilisation Using Graph Neural Networks.","authors":"Soheila Molaei, Nima Ghanbari Bousejin, Ghadeer O Ghosheh, Anshul Thakur, Vinod Kumar Chauhan, Tingting Zhu, David A Clifton","doi":"10.1007/s41666-024-00169-2","DOIUrl":"10.1007/s41666-024-00169-2","url":null,"abstract":"<p><p>Electronic Health Records (EHRs) play a crucial role in shaping predictive are models, yet they encounter challenges such as significant data gaps and class imbalances. Traditional Graph Neural Network (GNN) approaches have limitations in fully leveraging neighbourhood data or demanding intensive computational requirements for regularisation. To address this challenge, we introduce CliqueFluxNet, a novel framework that innovatively constructs a patient similarity graph to maximise cliques, thereby highlighting strong inter-patient connections. At the heart of CliqueFluxNet lies its stochastic edge fluxing strategy - a dynamic process involving random edge addition and removal during training. This strategy aims to enhance the model's generalisability and mitigate overfitting. Our empirical analysis, conducted on MIMIC-III and eICU datasets, focuses on the tasks of mortality and readmission prediction. It demonstrates significant progress in representation learning, particularly in scenarios with limited data availability. Qualitative assessments further underscore CliqueFluxNet's effectiveness in extracting meaningful EHR representations, solidifying its potential for advancing GNN applications in healthcare analytics.</p>","PeriodicalId":101413,"journal":{"name":"Journal of healthcare informatics research","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11310186/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141918532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Prompt Tuning in Biomedical Relation Extraction 生物医学关系提取中的及时调整
Pub Date : 2024-02-29 DOI: 10.1007/s41666-024-00162-9
JianPing He, Fang Li, Jianfu Li, Xinyue Hu, Yi Nian, Yang Xiang, Jingqi Wang, Qiang Wei, Yiming Li, Hua Xu, Cui Tao
{"title":"Prompt Tuning in Biomedical Relation Extraction","authors":"JianPing He, Fang Li, Jianfu Li, Xinyue Hu, Yi Nian, Yang Xiang, Jingqi Wang, Qiang Wei, Yiming Li, Hua Xu, Cui Tao","doi":"10.1007/s41666-024-00162-9","DOIUrl":"https://doi.org/10.1007/s41666-024-00162-9","url":null,"abstract":"","PeriodicalId":101413,"journal":{"name":"Journal of healthcare informatics research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140410466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Systematic Review on Pill and Medication Dispensers from a Human-Centered Perspective 从 "以人为本 "的角度对药丸和药物分配器进行系统回顾
Pub Date : 2024-02-22 DOI: 10.1007/s41666-024-00161-w
L. Gargioni, D. Fogli, Pietro Baroni
{"title":"A Systematic Review on Pill and Medication Dispensers from a Human-Centered Perspective","authors":"L. Gargioni, D. Fogli, Pietro Baroni","doi":"10.1007/s41666-024-00161-w","DOIUrl":"https://doi.org/10.1007/s41666-024-00161-w","url":null,"abstract":"","PeriodicalId":101413,"journal":{"name":"Journal of healthcare informatics research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140441532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
NeighBERT: Medical Entity Linking Using Relation-Induced Dense Retrieval NeighBERT:利用关系诱导密集检索进行医学实体链接
Pub Date : 2024-01-18 DOI: 10.1007/s41666-023-00136-3
Ayush Singh, Saranya Krishnamoorthy, John E. Ortega
{"title":"NeighBERT: Medical Entity Linking Using Relation-Induced Dense Retrieval","authors":"Ayush Singh, Saranya Krishnamoorthy, John E. Ortega","doi":"10.1007/s41666-023-00136-3","DOIUrl":"https://doi.org/10.1007/s41666-023-00136-3","url":null,"abstract":"","PeriodicalId":101413,"journal":{"name":"Journal of healthcare informatics research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139525949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Neural Models for Generating Natural Language Summaries from Temporal Personal Health Data 从时态个人健康数据生成自然语言摘要的神经模型
Pub Date : 2024-01-16 DOI: 10.1007/s41666-023-00158-x
Jon Harris, Mohammed J. Zaki
{"title":"Neural Models for Generating Natural Language Summaries from Temporal Personal Health Data","authors":"Jon Harris, Mohammed J. Zaki","doi":"10.1007/s41666-023-00158-x","DOIUrl":"https://doi.org/10.1007/s41666-023-00158-x","url":null,"abstract":"","PeriodicalId":101413,"journal":{"name":"Journal of healthcare informatics research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139527961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identifying and Extracting Rare Diseases and Their Phenotypes with Large Language Models 利用大型语言模型识别和提取罕见疾病及其表型
Pub Date : 2024-01-05 DOI: 10.1007/s41666-023-00155-0
Cathy Shyr, Yan Hu, L. Bastarache, Alex Cheng, Rizwan Hamid, Paul Harris, Hua Xu
{"title":"Identifying and Extracting Rare Diseases and Their Phenotypes with Large Language Models","authors":"Cathy Shyr, Yan Hu, L. Bastarache, Alex Cheng, Rizwan Hamid, Paul Harris, Hua Xu","doi":"10.1007/s41666-023-00155-0","DOIUrl":"https://doi.org/10.1007/s41666-023-00155-0","url":null,"abstract":"","PeriodicalId":101413,"journal":{"name":"Journal of healthcare informatics research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139381790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Contextual Word Embedding for Biomedical Knowledge Extraction: a Rapid Review and Case Study 用于生物医学知识提取的上下文词嵌入:快速回顾与案例研究
Pub Date : 2024-01-03 DOI: 10.1007/s41666-023-00157-y
Dinithi Vithanage, Ping Yu, Lei Wang, Chao Deng
{"title":"Contextual Word Embedding for Biomedical Knowledge Extraction: a Rapid Review and Case Study","authors":"Dinithi Vithanage, Ping Yu, Lei Wang, Chao Deng","doi":"10.1007/s41666-023-00157-y","DOIUrl":"https://doi.org/10.1007/s41666-023-00157-y","url":null,"abstract":"","PeriodicalId":101413,"journal":{"name":"Journal of healthcare informatics research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139389543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Brain Activity is Influenced by How High Dimensional Data are Represented: An EEG Study of Scatterplot Diagnostic (Scagnostics) Measures 大脑活动受高维数据表示方式的影响:散点图诊断(Scagnostics)措施的脑电图研究
Pub Date : 2023-12-12 DOI: 10.1007/s41666-023-00145-2
Ronak Etemadpour, Sonali Shintree, A. D. Shereen
{"title":"Brain Activity is Influenced by How High Dimensional Data are Represented: An EEG Study of Scatterplot Diagnostic (Scagnostics) Measures","authors":"Ronak Etemadpour, Sonali Shintree, A. D. Shereen","doi":"10.1007/s41666-023-00145-2","DOIUrl":"https://doi.org/10.1007/s41666-023-00145-2","url":null,"abstract":"","PeriodicalId":101413,"journal":{"name":"Journal of healthcare informatics research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139009866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biases in Electronic Health Records Data for Generating Real-World Evidence: An Overview 产生真实世界证据的电子健康记录数据偏差:综述
Pub Date : 2023-11-14 DOI: 10.1007/s41666-023-00153-2
Ban Al-Sahab, Alan Leviton, Tobias Loddenkemper, Nigel Paneth, Bo Zhang
{"title":"Biases in Electronic Health Records Data for Generating Real-World Evidence: An Overview","authors":"Ban Al-Sahab, Alan Leviton, Tobias Loddenkemper, Nigel Paneth, Bo Zhang","doi":"10.1007/s41666-023-00153-2","DOIUrl":"https://doi.org/10.1007/s41666-023-00153-2","url":null,"abstract":"","PeriodicalId":101413,"journal":{"name":"Journal of healthcare informatics research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134902772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interpretable Predictive Models to Understand Risk Factors for Maternal and Fetal Outcomes 可解释的预测模型来了解孕产妇和胎儿结局的危险因素
Pub Date : 2023-10-13 DOI: 10.1007/s41666-023-00151-4
Tomas M. Bosschieter, Zifei Xu, Hui Lan, Benjamin J. Lengerich, Harsha Nori, Ian Painter, Vivienne Souter, Rich Caruana
Although most pregnancies result in a good outcome, complications are not uncommon and can be associated with serious implications for mothers and babies. Predictive modeling has the potential to improve outcomes through better understanding of risk factors, heightened surveillance for high risk patients, and more timely and appropriate interventions, thereby helping obstetricians deliver better care. We identify and study the most important risk factors for four types of pregnancy complications: (i) severe maternal morbidity, (ii) shoulder dystocia, (iii) preterm preeclampsia, and (iv) antepartum stillbirth. We use an Explainable Boosting Machine (EBM), a high-accuracy glass-box learning method, for prediction and identification of important risk factors. We undertake external validation and perform an extensive robustness analysis of the EBM models. EBMs match the accuracy of other black-box ML methods such as deep neural networks and random forests, and outperform logistic regression, while being more interpretable. EBMs prove to be robust. The interpretability of the EBM models reveals surprising insights into the features contributing to risk (e.g. maternal height is the second most important feature for shoulder dystocia) and may have potential for clinical application in the prediction and prevention of serious complications in pregnancy.
虽然大多数妊娠结果良好,但并发症并不罕见,并可能对母亲和婴儿产生严重影响。通过更好地了解风险因素,加强对高危患者的监测,以及更及时和适当的干预,预测模型有可能改善结果,从而帮助产科医生提供更好的护理。我们确定并研究了四种妊娠并发症的最重要的危险因素:(i)严重的产妇发病率,(ii)肩难产,(iii)早产先兆子痫,(iv)产前死产。我们使用可解释的增强机(EBM),一种高精度的玻璃盒学习方法,来预测和识别重要的风险因素。我们进行外部验证,并对EBM模型进行广泛的稳健性分析。EBMs与其他黑箱机器学习方法(如深度神经网络和随机森林)的准确性相匹配,并且优于逻辑回归,同时更具可解释性。ebm被证明是健壮的。EBM模型的可解释性揭示了对导致风险的特征的惊人见解(例如,母亲身高是肩关节难产的第二大重要特征),并且可能在预测和预防妊娠严重并发症方面具有潜在的临床应用潜力。
{"title":"Interpretable Predictive Models to Understand Risk Factors for Maternal and Fetal Outcomes","authors":"Tomas M. Bosschieter, Zifei Xu, Hui Lan, Benjamin J. Lengerich, Harsha Nori, Ian Painter, Vivienne Souter, Rich Caruana","doi":"10.1007/s41666-023-00151-4","DOIUrl":"https://doi.org/10.1007/s41666-023-00151-4","url":null,"abstract":"Although most pregnancies result in a good outcome, complications are not uncommon and can be associated with serious implications for mothers and babies. Predictive modeling has the potential to improve outcomes through better understanding of risk factors, heightened surveillance for high risk patients, and more timely and appropriate interventions, thereby helping obstetricians deliver better care. We identify and study the most important risk factors for four types of pregnancy complications: (i) severe maternal morbidity, (ii) shoulder dystocia, (iii) preterm preeclampsia, and (iv) antepartum stillbirth. We use an Explainable Boosting Machine (EBM), a high-accuracy glass-box learning method, for prediction and identification of important risk factors. We undertake external validation and perform an extensive robustness analysis of the EBM models. EBMs match the accuracy of other black-box ML methods such as deep neural networks and random forests, and outperform logistic regression, while being more interpretable. EBMs prove to be robust. The interpretability of the EBM models reveals surprising insights into the features contributing to risk (e.g. maternal height is the second most important feature for shoulder dystocia) and may have potential for clinical application in the prediction and prevention of serious complications in pregnancy.","PeriodicalId":101413,"journal":{"name":"Journal of healthcare informatics research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135858010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of healthcare informatics research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1